Теория вероятностей на уроках математики

СОДЕРЖАНИЕ

Введение. 2

Глава I. Научные основы теории вероятностей. 5

§1. История развития теории вероятностей. 5

§2. Виды событий. 6

§3. Вероятностное пространство. 7

§4. Операции над случайными событиями. 10

§5. Понятие вероятности события. 15

§6. Теоремы о вероятности суммы событий. 22

§7. Теорема умножения вероятностей. 25

§8. Ф

ормула полной вероятности. Теорема гипотез. 29

§9. Формула Бернулли. 31

Глава II. Методические особенности изучения основ

Теории вероятностей в классах с углубленным изучением математике. 35

§1. Основные цели изучения теории вероятностей в классах с углубленным изучением математики. 35

§2. Анализ содержания темы "Элементы теории вероятностей" в школьных учебниках 37

§3. Методические особенности изучения основ теории вероятностей в классах с углубленным изучением математике. 41

§4. Описание опытной работы 58

Заключение. 62

Список использованной литературы 63

Введение

Предмет теории вероятностей отличается большим своеобразием. Необычный характер теоретико-вероятностных понятий является причиной того, что долгое время подход к этим понятиям основывался только на интуитивных соображениях. Это и подрывало веру в правильность выводов теории вероятностей: многие ее положения носили расплывчатый характер и вызывали сомнения.

Теория вероятностей один из разделов, введенный в школьный курс, представляющий несомненную ценность для общего образования. Полезность получаемых знаний состоит как в том значении, которое имеют эти знания для понимания и познания закономерностей окружающего нас мира, так и возможности их непосредственного применения при изучении других наук и в повседневной жизненной практике.

Теория вероятностей – это такой раздел математики, который позволяет обучать учащихся логике на практике. В процессе освоения теоретических фактов решается задача развития у учащихся навыков проведения логических рассуждений, способностей абстрагировать т.е. выделять в конкретной ситуации сущность вопроса, отвлекаясь от несущественных деталей. Изучая теорию вероятностей, учащиеся овладевают умениями анализировать рассматриваемый вопрос, обобщать, находить пути решения поставленной задачи. Все это формирует мышление учащихся и способствует развитию их речи, особенно таких качеств выражения мысли, как порядок, ясность, обоснованность.

Изучение теории вероятностей требует от каждого ученика больших усилий и немалого времени. Полученные при этом навыки учебного труда позволяет выпускникам школы в их дальнейшем жизненном пути эффективно овладевать навыками выполнения других видов труда и с должным пониманием относится к тому, что хорошее выполнение любой работы требует значительных усилий и ответственности.

Изучение теории вероятностей способствует развитию у учащихся наблюдательности, внимания и сосредоточенности, инициативы и настойчивости. Все это имеет большое значение для формирования их характера.

Несмотря на то, что теория вероятностей является важным разделом школьной математики, учебной и математической литературы очень мало. Учебная литература резко разделяется на две категории: книги доступные лишь читателю с солидной математической подготовкой и книги, изучающие предмет на интуитивном уровне.

Анализ содержания учебно-методической литературы (журналов "Квант", "Математика в школе", газеты "Математика" приложения к газете "1сентября") показывает, что вопросами преподавания теории вероятностей уделяется в школе крайне недостаточно внимания.

Все выше сказанное приводит к проблеме разработки методики обучения теоретико-вероятностным вопросам в школе.

Выделенная проблема обусловила основную цель дипломной работы: разработать методические рекомендации по изучению элементов теории вероятностей в классах с углубленным изучением математики.

В качестве частных задач для достижения поставленной цели были приняты:

· Разработать научные основы теории вероятностей;

· Проанализировать математическую составляющую темы "Элементы теории вероятностей" в различных действующих учебных пособиях по математике для классов с углубленным изучением математики;

· Выделить основные цели и задачи изучения теории вероятностей в курсе школьной математики;

· Провести частичную апробацию разработанные дидактических материалов по изучению теоретико-вероятностных вопросов.

Основными методами решения задач являются:

· Изучение и анализ научной учебно-методической литературы, программ по математике для общеобразовательных учреждений;

· Наблюдение за деятельностью учащихся, ее анализ;

· Беседы с учащимися и педагогом;

· Проведение опытной работы

Глава I. Научные основы теории вероятностей

§1. История развития теории вероятностей

Теорию вероятностей можно описательно определить как математическую теорию случайных явлений.

В повседневной жизни мы часто пользуемся словами "вероятность", "шанс" и т.д. "К вечеру, вероятно, пойдет дождь", "вероятнее всего, мы на всю неделю поедем в деревню", "это совершенно невероятно!", "есть шанс, что успешно сдам экзамен" и т.д. - все эти выражения как-то оценивают вероятность того, что произойдет некоторое случайное событие.

Вероятность математическая – числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторятся неограниченное число раз условиях.

Во второй половине XIX века вероятность вошла в физику в процессе разработки молекулярно-кинетической теории.

Понятие вероятности разрабатывается наукой уже в течении столетий, а многие ученые-исследователи указывают на его незавершенность и неясность. "Все говорят о вероятности, но никто не может сказать что это такое" [Биркгар, 1952]

С вероятностными представлениями мы встречаемся еще в античности. У Демокрита, Лукреция Кара и других античных ученых и мыслителей мы находим глубокие предвидения о строении материи с беспорядочным движением частиц (молекул), встречаем рассуждения о равновозможных исходах (равновероятностных) и т.п. еще в древности делались попытки сбора и анализа некоторых статистических материалов – все это создавало почву для выработки новых научных понятий, в том числе и понятия вероятности. Но античная наука не дошла до выделения этого понятия.

В средневековье мы наблюдаем разрозненные попытки осмыслить встречающиеся вероятностные рассуждения.

В работах Л. Пачоли, Н. Тарталья и в первую очередь Д. Кардано уже делались попытки выделить новые понятия – отношения шансов – при решении ряда специфических задач, прежде всего комбинаторных.

К середине XVII в. вероятностные вопросы и проблемы привлекли внимание ученых Б. Паскаля, П. Ферма, Х. Гюйгенса. В этот период были выработаны первые понятия, такие как математическое ожидание и вероятность (в форме отношения шансов), установлены первые свойства вероятности: теоремы сложения и умножения вероятностей. В это время теория вероятностей находит свои первые применения в демографии, страховом деле, в оценке ошибок наблюдения.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы