Теория вероятностей на уроках математики

Задания первого и второго уровней были предложены с целью проверки знаний формул теорем о сумме и произведении вероятностей событий.

Задание третьего уровня преследует цель анализа знаний по классификации событий на достоверные, невозможные и случайные.

Задание четвертого уровня направлено на проверку умения решать задачи по классическому определению вероятности.

Большинство учащихс

я (57%) справилось с работой на "отлично", 32% - "на хорошо", остальные 11% - "на удовлетворительно".

Анализируя результаты работы учеников, можно сделать вывод, что большая часть учащихся усвоила основные теоретико-вероятностные вопросы и умеет решать задачи с применением классического определения вероятности.

Такие результаты возможно связанны с применением в процессе обучения разработанных методических рекомендаций.

Заключение

На основе проведенного анализа психолого-педагогической и методической литературы, а так же проведенной опытно-экспериментальной работой можно сделать выводы.

1. Основной целью изучения темы "элементы теории вероятностей" в классах с углубленным изучением математики как дедуктивной системе знаний; систематизация некоторых способов решения задач; создание условий для понимания основной идеи практической значимости теории вероятностей.

2. Анализ содержания темы элементы теории вероятностей различных учебных пособий, предназначенных для изучения в школе, позволяет в качестве основного предложить учебное пособие под редакцией Н.Я. Виленкина [5], материал в котором изложен на высокой ступени абстракции, дедуктивно; система задач, в котором полна.

3. При изучении теории вероятностей считаем целесообразным использование следующих методических рекомендаций:

- в начале изучения теории вероятностей рассмотрение основ теории, поиск решения задачи предварить постановкой опытов;

- формулировки определений основных теоретико-вероятностных вопросов, формулы сложения и умножения возможностей на ряду с символической записью, представлять в виде наглядных схем;

- решение систем задач определенного типа обобщать выделением алгоритма. Дальнейшее решение задач проводить в рамках принятого алгоритма с определенной формой записи решения;

- предварительно подбирать задачи, способствующие самостоятельному открытию учащимися теорем их формулировок, выявлению способа доказательства теорем и проведению доказательства;

- использовать различные формы проведения учебных занятий: лекций, уроков –практикумов и других.

Список использованной литературы

1. Баженов М.А. Из опыта преподавания теории вероятностей // Математика в школе, 1972 №2.

2. Вейц Б.Е. Элементы теории вероятностей и комбинаторика // Математика в школе, 1969 №1.

3. Вентцель Е.С. Теория вероятностей – М.: Наука, 1964.

4. Виленкин Н.Я. Алгебра 9 – М.: Просвещение, 1999.

5. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбург С.И. Алгебра и математический анализ 11 – М.: Просвещение, 1979.

6. Виленкин Н.Я., Потапов Задачник – практикум по теории вероятностей с элементами комбинаторики и математической статистики: учебное пособие для студентов физико-математических факультетов 4курса – М.: Просвещение, 1979.

7. Гмурман В.Е. Теория вероятностей и математическая статистика – М.: Просвящение, 1988.

8. Гнеденко Б.В. Теория вероятностей и математическая статистика – М.: Просвещение, 1974.

9. Колмогоров А.Н. Теория вероятности и комбинаторика // Математика в школе 1968 №2, №3.

10. Гнеденко Б.В., Хинчин А.Я. Элементарное введение в теорию вероятностей – М.: Наука, 1982.

11. Журбенко А.Н. Введение в теорию вероятностей и комбинаторику // Математика в школе, 1968 №2.

12. Колмогоров А.Н., Журбенко И.Г. Введение в теорию вероятностей – М.: Наука, 1982.

13. Колмогоров А.Н. Введение в теорию вероятностей и комбинаторику // Математика в школе, 1968.

14. Колягин М.Ю. и др. Методика преподавания математики в средней школе. Частные методики – М.: Просвещение, 1977.

15. Колягин Ю.М., Текан В. В о прикладной и практической направленности обучения математике // Математика в школе, 1985 №6.

16. Лютикас В.С. Факультативный курс по математике. Теория вероятностей – М.: Просвещение, 1999.

17. Майстров Л.Е. Развитие понятия вероятности – М.: Наука, 1980.

18. Программа для школ (классов) с углубленным изучением математики – М.: Просвещение, 1994.

19. Савельев Л.Я. Комбинаторика и вероятность – М.: Наука, 1975.

20. Солодовников А.С. Теория вероятностей – М.: Просвещение, 1978.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы