Теория вероятностей на уроках математики
Развитие теории вероятностей в начале XX века привело к необходимости пересмотра и уточнения ее логических основ. Возникла необходимость аксиоматизации теории вероятностей и ее основного понятия - вероятности.
Первые работы того периода связанны с именами С.Н. Берштейна, Мизеса, Э. Бореля. окончательное становление аксиоматики произошло в 30-е годы XX века. Это произошло благодаря А.Н. Косм
огорову. В этот период понятие вероятности проникает почти во все сферы человеческой деятельности, становясь одним из основных понятий современной науки.
§2. Виды событий
События в материальном мире можно разбить на три категории –достоверные, невозможные и случайные. Например, если подбросить игральную кость, то достоверно, что число выпавших очков будет натуральным числом, невозможно, чтобы это число равнялось 7, и возможно, что оно будет равно 5, а при других будут выпадать другие значения очков: 1,2,3,4 или 6.
Определение 1. случайными событиями называется такой исход наблюдения или эксперимента, который при реализации данного комплекса условий может произойти, а может и не произойти.
Примеры:
1. выпадение герба при бросании одной монеты.
2. выпадение четырех очков при бросании игральной кости – случайные события.
Определение 2. Случайное событие, которое обязательно наступит, называется достоверным событием и обозначается буквой ù.
Примеры:
3. выпадение герба или цифры при подбрасывании одной монеты;
4. выигрыш, проигрыш или ничья в матче двух футбольных команд – достоверные события.
Определение 3. Событие определяется невозможным, если оно не содержит никакого множества исходов и обозначается буквой .
При любом исходе испытания это событие не происходит. Иными словами, невозможное событие состоит из пустого множества исходов.
Примеры:
5. выпадение более 6 очков при подбрасывании игрального кубика;
6. выпадение цифры и герба одновременно при подбрасывании одной монеты – невозможные события.
§3. Вероятностное пространство
Представим, что некоторый прямоугольник Е мы разрезали (рис 1) на n прямоугольных пронумерованных карточек еi (i=1,2,3, . .,n). допустим, после хорошей перестановки одну карточку наугад вытаскиваем из всей стопки. При такой операции:
· одно из событий "вытащена одна карточка" непременно произойдет;
· при одном испытании вытаскивание любой из карточек появляется в одном и только одном исход; например, если была вытащена карточка 17, т.е. произошло событие е17, то в это же время не могло произойти событие е5, состоящее в вытаскивании карточки с номером 5
e5 | |||||
ei | |||||
e17 |
E1 | E2 | E3 | E4 | E5 | E6 |
Рис 1. Рис. 2.
События ei, состоящие в появлении карточки с номером i (i=1,2,3,…. n), могут послужить примером элементарных событий, а прямоугольник е – примером пространства элементарных событий, связанных с реализацией испытания S – выталкиванием одной карточки после разреза прямоугольника на Е на маленькие прямоугольники и вытаскивания случайной карточки после тщательной перестановки.
Определение 1. Пространство элементарных событий (полная группа событий) множество событий таких, что в результате испытания обязательно должно произойти хотя бы одно из них и любые два из них несовместны.
Пространство элементарных событий Е, определенное бросанием игральной кости, представляет события, где еi выпало n очков (n=1,2,3,4,5,6)
Рассмотрим события (рис 2):
А-"выпало четное число очков"
В-"выпало не меньше 2 очков"
С-"выпало не больше 2 очков"
А произошло, если произошло одно из элементарных событий е2, е4, е6. Выразим это символом е2еА, е4еА, е6еА.
Тогда: е2
е3 е1
е4 = еВ, =еС
е5 е2
е6
Поскольку е2, е4, е6 есть некоторые из элементов
Пространства Е={е1, е2, е3, е4, е5, е6}, эту тройку удобно назвать подпространством (частью) пространства Е значит, событие А можно рассматривать как пространство ему благоприятствующих элементарных событий {е2; е3; е4; е5; е6}, событие С - как подпространство ему благоприятствующих элементарных событий {е1, е2}. Если ei не благоприятствует событию с-то пишут ei=A.
Реализация испытаний S однозначно определяет пространство элементарных событий Е. Любое случайное событие Н связанное с испытанием S, можно рассматривать как подпространство благоприятствующих этому событию элементарных событий пространства Е. Изобразить его можно некоторой фигурой, построенной из клеточек символи-
зирующих элементарные события, благоприятствующие событию Н.
Е1 |
Е2 |
Е3 |
Е4 |
Е5 |
Е6 |
Например, событие Н1-"выпало меньше трех очков"-может быть изображено одной заштрихованной фигурой (рис3), а событие Н6-"выпало больше 2 или меньше 5 очков" - двумя фигурами (рис 4).
Е1 |
Е2 |
Е3 |
Е4 |
Е5 |
Е6 |
§4. Операции над случайными событиями
п.1. Отношения между событиями.
Сравним следующие события: А - появление двух очков при бросании игральной кости., В-появление четного числа очков при бросании игральной кости.
Замечаем следующие соотношения между событиями, если произошло А, то тем самым произошло и В.
Событие А является частью события В состоит в осуществлении трех элементарных событий: "появление 2 очков", "появление 4 очков", "появление 6 очков", а событие А - одним из них – "появление двух очков".
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах