Теория вероятностей на уроках математики
Глава II. Методические особенности изучения основ
Теории вероятностей в классах с углубленным изучением математике
§1. Основные цели изучения теории вероятностей в классах с углубленным изучением математики
Математические школы и классы с углубленным изучением математики были созданы в нашей стране в начале 60-х годов, когда выяснялась необходимость в подг
отовке специалистов, умеющих использовать прикладные возможности математики: программистов, инженеров-конструкторов, физиков, экономистов и других.
В настоящее время в математических школах и класса с углубленным изучением математики обучение ведется по программам разработанным коллективом ученых и преподавателей ВУЗов.
При сравнении программ массовой и математической школы можно отметить, что алгебраический материал, изучаемый в математических классах, включает темы, отсутствующие в программе массовой школы. Среди них теория вероятностей.
Содержание обучения теме "элементы теории вероятностей", выделены в "программе для общеобразовательных учреждений. Математика" [18] обеспечивает дальнейшее развитие у учащихся их математических способностей, ориентации на профессии, существенным образом связанных с математикой, подготовку к обучению в ВУЗе. Специфика математического содержания рассматриваемой темы позволяет конкретизировать выделенную основную задачу углубленного изучения математики следующим образом.
1. продолжить раскрытие содержания математики, как дедуктивной системы знаний.
А) построить систему определений основных понятий;
Б) выявить дополнительные свойства введенных понятий;
В) установить связи введенных и ранее изученных понятий.
2. Систематизировать некоторые вероятностные способы решения задач; раскрыть операционный состав поиска решений задач определенных типов.
3. Создать условия для понимания и осознания учащимися основной идеи практической значимости теории вероятностей путем анализа основных теоретических фактов. Раскрыть практические приложения изучаемой в данной теме теории.
Достижению поставленных образовательных целей будет способствовать решение следующих задач:
1. Сформировать представление о различных способах определения вероятности события (статистическое, классическое, геометрическое, аксиоматическое)
2. Сформировать знание основных операций над событиями и умения применять их для описания одних событий через другие.
3. Раскрыть сущность теории сложения и умножения вероятностей; определить границы использования этих теорем. Показать их применения для вывода формул полной вероятности и формул Байеса.
4. Выявить алгоритмы нахождения вероятностей событий
а) по классическому определению вероятности;
б) по теории сложения и умножения;
в) по формуле полной вероятности;
г) по формуле Байеса.
Сформировать предписание, позволяющее рационально выбрать один из алгоритмов при решении конкретной задачи.
Выделенные образовательные цели для изучения элементов теории вероятностей дополним постановкой развивающих и воспитательных целей.
Развивающие цели:
· формировать у учащихся устойчивый интерес к предмету, выявлять и развивать математические способности;
· в процессе обучения развивать речь, мышление, эмоционально-волевую и конкретностно-мотивационную области;
· самостоятельное нахождение учащимися новых способов решения проблем и задач;
· применение знаний в новых ситуациях и обстоятельствах;
· развивать умение объяснить факты, связи между явлениями, преобразовывать материал из одной формы представления в другую (вербальная, знако-символическая, графическая);
· учить демонстрировать правильное применение методов, видеть логику рассуждений, сходство и различие явлений.
Воспитательные цели:
· формировать у школьников нравственные и эстетические представления, систему взглядов на мир, способность следовать нормам поведения в обществе;
· формировать потребности личности, мотивы социального поведения, деятельности, ценностей и ценностных ориентаций;
· воспитывать личность, способную к самообразованию и самовоспитанию.
§2. Анализ содержания темы "Элементы теории вероятностей" в школьных учебниках
Теория вероятностей не изучается на базовом уровне. Эта тема становится актуальной лишь для учащихся классов с углубленным изучением математики.
С понятием "вероятность" учащиеся впервые встречаются в9классе.
В содержании темы учебника "Алгебра 9" [4] выделяются три взаимосвязанных направления, имеющие особое значение для развития логического и вариационного мышления. Во-первых, это подготовка в области комбинаторики, с целью создания аппарата для решения вероятностных задач и формирования важного вида практически ориентированной математической деятельности; во-вторых, формирование умений связанных со сбором, представлением и анализом данных; и в - третьих, формирование представлений о вероятности случайных событий и умение решать вероятностные задачи.
На данном этапе изучения уточняются способы представления и нахождения информации в таблицах, на диаграммах, в каталогах, рассматриваются задачи на перебор вариантов, формируются начальные представления о частоте и вероятности событий.
Дальнейшее изучение теории вероятностей осуществляется в 11 классе.
В учебнике "Алгебра 11" [5] глава "элементы теории вероятностей" начинается с рассмотрения достоверных, невозможных и случайных событий пока только на интуитивном уровне. Приводятся примеры на каждый вид событий и говорится о том, что случайные события представляют для нас особый интерес, к их изучению привели математиков потребности практики.
Основное понятие, с которым связан весь курс теории вероятностей – это понятие опыта (или испытания). Но ему не дается четкое математическое определение, а вводится на интуитивном уровне.
Материал в теме изложен дедуктивно, если вводимым понятиям даются точные математические определения. Можно построить несколько логических цепочек определений:
1. По количеству благоприятных исходов из возможных, относительно одного события.
Событие
достоверное невозможное случайное
2. По количеству благоприятных исходов, относительно нескольких событий:
События
несовместные
противоположные
независимые
3. операции над событиями
![]() |
объединение разность событий
событий пересечение
событий следствие
событий
Перечисленные понятия вводятся описательно, на каждое из них приводится пример.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах