Судоку и хроматические многочлены
Эти вопросы предполагают более общий вопрос определения "минимума судоку" для общей задачи ранга n.
Мы уже отмечали различные симметрии квадратов судоку. Например, применяя перестановку к элементам {1,2, ., n2}, мы получим новый квадрат судоку. Таким образом, начиная с одного такого квадрата, мы можем произвести n2! новых судоку. Есть также ленточные перестановки их n!, а также пе
рестановки столбцов, которых также n!. Мы можем переставить колонки в пределах полосы, а также столбцы в пределах стека - n! n симметрий. В итоге, это генерирует группу симметрии, которые могут быть рассмотрены как подгруппа Sn4. Будет интересным определить размер и структуру этой подгруппы.
Список использованных источников
1. S. Bammel and J. Rothstein, The number of 9 × 9 Latin squares, Discrete Math.11 (1975), 93-95.
2. C. D. Godsil and B. D. McKay, Asymptotic enumeration of Latin rectangles, J.comb. Theory Ser. B 48 (1990), no.1, 19-44.
3. B. Felgenhauer and A. F. Jarvis, Mathematics of Sudoku I, Mathematical Spectrum 39 (2006), 15-22.
4. E.russell and A. F. Jarvis, Mathematics of Sudoku II, Mathematical Spectrum 39 (2006), 54-58.
5. J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
Приложение
Рис. 1
Рис. 2
Рис. 3
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах