Роль простых чисел в математике
Однако мы только начали движение, они еще встретятся, но в какой миг? Закономерности нет.
Как и пространство, множество простых чисел бесконечно. Бесконечный ряд чисел, который мы в результате счета предметов, называется НАТУРАЛЬНЫМ РЯДОМ ЧИСЕЛ: 1,2,3,4,5,… . Среди натурального ряда чисел мы выделяем простые числа. Простыми числами называются такие, которые делятся на 1 и на самих себя. Наи
меньшее простое число2.
Выделение простых чисел является сложной задачей математики. Ученые на протяжении многих веков пытаются найти формулу, которая позволила бы из множества натуральных чисел выписать простые. Первый, кто занимался этой задачей, был великий математик древности Эратосфен, живший почти 2 300 лет назад. Эратосфен был главным библиотекарь знаменитой Александрийской библиотеки, математиком, географом, историком, астрономом, философом и поэтом. Эратосфен вычислил наклон эклиптики – большой окружности сферы, по которой проходит видимое годичное движение солнца, расстояние от солнца и луны, длину земного меридиана (измерив расстояние от Асуана до Александрии), составив карту мира с учетом шарообразности Земли и т. д.
Способ Эратосфена составления таблиц простых чисел чрезвычайно прост и не требует проверки чисел на делимость. Он воспользовался особым методом, который был назван в честь ученого <<Решето Эратосфена>>. Чтобы очистить зерно, мы его просеиваем. Подобно этому Эратосфен <<просеивал>> числа натурального ряда, пользуясь особым приёмом.
Допустим, что были выписаны ( в таблице из 10рядов ) все по следовательно от 1 до 100. Прежде всего надо <<выбросить>> все четные числа, кроме 2. Подчеркнув число2, остальные числа, делящиеся на 2, зачеркнем. После 2 в таблице идет простое число 3. Подчеркнем число 3 как простое, а все остальные, делящееся на 3, зачеркнем. ( Числа, кратные 3, стоят на местах через два на третье.) теперь следующее простое число 5,которое опять подчеркиваем; выбрасываем все числа, кратные 5, которые расположены на местах через четвертое на пятое, считая ранее зачеркнутые. Дальше подчеркиваем следующее число 7 и зачеркиваем числа, делящиеся на 7, и т. д. Заметьте, что из всех натуральных чисел не зачеркнутыми остаются простые числа. Эратосфен у каждого составного числа прокладывал отверстие, и получалось нечто вроде решета, через которое эти составные числа <<просеивались>>.
Древне греческих ученых заинтересовало: сколько может быть простых чисел в натуральном ряду? Ответил на этот вопрос Евклид, доказав, что простых чисел бесконечное множество.
Однако способ Эратосфена не смог удовлетворить ученых, и они пытались найти формулу простых чисел. На протяжении многих столетий это сделать не удавалось. В ряду простых чисел были найдены многие интересные закономерности, но поставленная задача оставалась без ответа. Первым приблизился к решению проблем простых чисел П.Л. Чебышев.
В 1750 г. Леонард Эйлер установил, что число 2³¹ - 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 г. Французский математик Лукас установил, что огромное число
2127 - 1 = 170 141 183 560 469 231 731 687 303 715 884 105 727 также простое. Оно содержит 39 цифр. Для его вычисления были механические настольные счетные машины. В 1957 г. было найдено следующее простое число: 23217 – 1. А простое число 244 497 – 1 состоит из 13 000 цифр.
УЗЫ ДРУЖБЫ В МИРЕ ЧИСЕЛ
Два натуральных числа m и n называются дружественными, если сумма собственных делителей m равна n, а сумма собственных делителей n равна m.
История дружественных чисел теряется в глубине веков. По свидетельству античного философа Ямвлиха(III-IV вв.), великий Пифагор на вопрос, кого следует считать своим другом, ответил:<<Того, кто является моим вторым я, как числа 220 и 284>>. Проверьте, пожалуйста, что числа 220 и 284 дружественные.
Для нахождения дружественных чисел арабский ученый Сабит Ибн Курра (IX в. ) предложил хитроумный способ: задавшись натуральным числом n, подсчитать спамогательные величины p= 3*2n-1 – 1, q=3*2n -1 и r= 9*2 2n – 1`-1. Если окажется, что числа p, q, r простые, тогда числа А = 2n p q и В = 2nr дружественные.
Пифагорова пара 220 и 284 получаются по этому методу при n=2. Следующую пару чисел – 17 296 и 18 416 – обнаружили независимо друг от друга марокканский ученый Ибн Аль – Банна и три столетия спустя француз Пьер Ферма. В этом случае n=4. Третью пару – 9 363 584 и 9 437 056 (при n=7) – указал в 1638 г. Рене Декарт. Дальнейшие попытки найти дружественные пары при не больших значениях n к успеху не приводят. Более того способ Сабита ибн Курры не выявляется ни одной новой пары дружественных чисел, если n увеличивать до 20 000! Неужели дружественные числа – алмазы-самородки и для подсчета их пар многовато пальцев одной руки?
В 1747-1750 гг. Леонард Эйлер провел уникальные числовые раскопки. Он придумал оригинальные методы поиска и обнаружил сразу 61 новую пару дружественных чисел. Примечательно, что среди них оказались и не четные числа: 69 615 и 11 498 355; 87 633 и 12 024 045. Сейчас известно около 1100 пар дружественных чисел. Любопытно, что в 1866 г. итальянский школьник Н. Паганини (однофамилец известного скрипача) нашел пару дружественных чисел 1184 и 1210, которую все, в том числе и выдающееся математики, проглядели!
Вот пары дружественных чисел в пределе 100 000:
220 – 284
1184 – 1210
2620 – 2924
5020 – 5564
6232 – 6368
10744 – 10856
12285 – 14595
17296 – 18416
63020 – 76084
66928 – 66992
67095 – 71145
69615 – 87633
79750 – 88730
Дружественные числа продолжают скрывать множество тайн. Есть ли смешанные пары, у которых одно число четное, а другое не четное? Существует общая формула, описывающая все дружественные пары? На эти и другие вопросы ответы пока не найдены.
Из опыта вычисления люди знали, что каждое число является либо простым, либо произведением нескольких простых чисел. Но они не умели этого доказывать. Пифагор или кто-то из его последователей нашел доказательство этого утверждения.
Теперь легко объяснить роль простых чисел в математике: они являются теми кирпичиками, из которых с помощью умножения строят все остальные числа. Хорошо было бы, если все простые числа можно было сосчитать! Пусть их было бы хоть миллион – все равно мы знали бы, что, перемножая эти простые числа, можем получить все остальные. Но это оказалось не так. Через два столетия после Пифагора греческий геометр Евклид написал книгу <<Начала>>. И одними из утверждений этой книги было следующее: самого большого простого числа не существует.
Простые числа в натуральном ряде чисел, расположены очень причудливо. Иногда между ними есть только одно четное число (все простые числа, кроме числа 2, нечетные). Такими близнецами так их зовут в науке, являются: 11 и 13, 17 и 19, 29 и 31. До сих пор не известно, есть ли самые большие близнецы или нет. А иногда между соседними простыми числами лежит пропасть в миллионы и миллиарды чисел. Первым глубокие результаты о том, как разбросаны простые числа среди остальных натуральных чисел, получил великий русский математик Пафнутий Львович Чебышев, основатель и руководитель русских математических исследований в прошлом веке.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах