Проекция геометрических объектов

Далее переходим к развертке конуса. Представим поверхность в виде гибкой, тонкой нерастяжимой пленки. Оказывается, при таком условии некоторые поверхности можно, постепенно изгибая, совместить с плоскостью так, что при этом не будет разрывов и складок. Поверхности, обладающие указанными свойствами (многогранные, конические, цилиндрические, торсовые), называют развертывающимися, а фигуру, получе

нную от совмещения поверхности с плоскостью, - разверткой.

Развертки обладают следующими свойствами:

Длины двух соответственных линий развертки и поверхности равны между собой.

Углы, образованные линиями на поверхности, и углы между соответственными линиями на развертке также равны.

Замкнутая линия на поверхности и соответствующая ей линия на развертке ограничивают одинаковые площади, поэтому площадь развертки равна площади соответствующего отсека самой поверхности.

Из перечисленных свойств вытекают следующие следствия:

Следствие 1: Прямая на поверхности переходит в прямую на развертке.

Следствие 2: Параллельным прямым, лежащим на поверхности, соответствуют параллельные прямые на развертке.

Для построения развертки поверхности конуса, для начала перерисуем его без врезающегося цилиндра и с видимым основанием, которое делим на равные части с помощью циркуля раствором равным радиусу основания цилиндра. Отметим точки 1 , 2 ,3 ,4 ,5 ,6 ,7 .Чтобы найти точки, по которым нужно построить линию пересечения конуса и цилиндра, проводим образующие на которых они лежат, и на пересечении их с линиями проекционной связи получаем точки A ,B ,C ,D , F ,G .

Затем переходим к самой развертке. Развертка прямого конуса имеет форму кругового сектора, который мы чертим циркулем, раствор которого равен высоте конуса, и ограничиваем образующими с обеих сторон. Делим основание развертки конуса на равные части как на предыдущем рисунке, а на образующих находим точки, принадлежащие линии пересечения конуса и цилиндра, которые соединяем плавной линией.

3. Построение изометрии взаимного пересечения поверхностей фигур

Изометрическая проекция – аксонометрическая проекция, при которой длины единичных отрезков на всех трех осях одинаковы

По изображениям на комплексном чертеже легко реконструировать объект, решать позиционные и метрические задачи. Для усиления наглядности изображения применяют также аксонометрические чертежи, обладающие свойством обратимости.

Сначала начертим аксонометрическую систему координат. Угол между осями равен 120 . Все измерения берем с чертежа, соответственно осям координат. Сначала чертим полусферу. Откладываем по осям x и y одинаковое расстояние равное диаметру основания полусферы. Вписываем эллипс в получившийся квадрат, поднимаем из центра высоту, равную высоте полусферы. Обводим видимую часть толстой линией, а невидимую пунктиром.

Затем строим цилиндр, основания которого лежат к координатной плоскости XOY. Строим согласно его местоположению на комплексном чертеже. Для построения линии пересечения полусферы и цилиндра находим точки, лежащие на ней. Находим образующие, на которых они находятся, откладываем на определенной высоте, взятой с чертежа. Полученные точки соединяем плавной линией. Видимую часть цилиндра обводим толстой линией, а невидимую пунктиром.

Также находим местоположение призмы, основания которой лежат в плоскости XOZ, взяв размеры с чертежа. Для построения линии пересечения, так же как и в первом случае требуется найти точки, принадлежащие этой линии. Они находятся аналогично: на ближней грани откладывается расстояние между образующими. А на них откладывается расстояние, на котором лежит соответствующая точка. Таким образом, получившиеся точки 1, 2, 3, 4 соединяем плавной линией и получаем линию пересечения полусферы и призмы. Видимую часть обводим толстой линией, а невидимую пунктиром.

Таким образом мы получили наглядное изображение взаимного пересечения поверхностей ( полусферы, цилиндра и призмы).

4. Создание фигуры с вырезом

В данном задании требуется построить конус с вырезом, который образован четырьмя попарно параллельными плоскостями, две из которых лежат в координатной плоскости XOY, а две другие – в ZOY. Для того, чтобы построить этот вырез на проекции П воспользуемся ранее описанным методом вспомогательных секущих плоскостей. Опорными точками в данном случае будут точки 1 и 1 , 5 и 5 . Находим их на проекции П : они будут лежать на пересечении линии проекционной связи с окружностью, проведенной из центра основания конуса, радиусом равным расстоянию от оси конуса до крайней образующей. Аналогично получаем точки 2 , 3 , 4 . Невидимую часть выреза проводим пунктиром, а видимую обводим толстой линией, также как и основание конуса.

Чтобы найти точки, принадлежащие проекции выреза на плоскость П , нужно провести линии проекционной связи. На них отложить расстояние от оси конуса равное расстоянию на проекции П от диаметра основания до соответственных точек. Полученные точки соединяем плавной линией. Далее определяем видимость: невидимую часть выреза, проходящую внутри конуса, проводим пунктиром, а видимую – толстой линией.

Так же в данном задании требуется построить изометрию конуса с вырезом. Сначала начертим аксонометрическую систему координат. Угол между осями равен 120 . Все измерения берем с чертежа, соответственно осям координат. Строим конус в изометрии. Затем переходим к вырезу. Для того чтобы построить вырез для начала нужно провести эллипсы, в которых лежат основания этого выреза, на оси эллипса отмерить расстояния, на которых лежат опорные точки, провести прямые параллельные оси Y, и на них отложить расстояние равное длине отрезка от оси конуса до опорных точек на проекции П . Получили точки 1 и 5. Также находим остальные точки – 2, 3, 4. Аналогично простаиваем заднюю невидимую часть выреза пунктиром, а видимую обводим толстой линией. Также обводим контур конуса.

Таким образом, мы получили наглядное изображение тела (конуса) с вырезом.

5. Процесс создания опоры

Для упрощения работы по выполнению наглядного изображения часто пользуются техническим рисунком.

Технический рисунок – это изображение, выполненное от руки (без применения чертежных инструментов), по правилам аксонометрии с соблюдением пропорций на глаз. При этом придерживаются тех же правил, что и при построении аксонометрических проекций, под теми же углами располагают оси, размеры откладывают вдоль осей или параллельно им.

Технический рисунок дает возможность более доступно, доходчиво пояснить чертежи сложных предметов. Применение технического рисунка позволяет закрепить техническую идею или предложение. Кроме того, применение технического рисунка детали очень полезно при эскизировании детали с натуры, хотя выполнять технический рисунок можно и по комплексному чертежу предмета.

Обычно на техническом рисунке для большего отображения объемности предмета показывают распределение светотени, которая состоит из падающей тени, отбрасываемой предметом на какую – либо поверхность и из собственной тени (тень и рефлекс) на неосвещенной его части. Условно считают, что источник света находится сверху, слева, сзади.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы