Метод конечных разностей или метод сеток
Рассмотрим линейную краевую задачу
(2.24)
(2.25)
,
где , , и непрерывны на [a,b].
Разобьем отрезок [a, b] на nравных частей длины, или шага
.
Точки разбиения
,
называются узлами, а их совокупность – сеткой на отрезке [a, b]. Значения в узлах искомой функции и ее производных обозначим соответственно через
.
Введем обозначения
Заменим производные так называемыми односторонними конечно-разностными отношениями:
(2.26)
Формулы (2.26) приближенно выражают значения производных во внутренних точках интервала [a, b].
Для граничных точек положим
. (2.27)
Используя формулы (2.26), дифференциальное уравнение (2.24) при , (i=1, 2, ., n–1) приближенно можно заменить линейной системой уравнений
(2.28)
Кроме того, в силу формул (2.27) краевые условия (2.25) дополнительно дают еще два уравнения:
. (2.29)
Таким образом, получена линейная система n+1 уравнений с n+1 неизвестными , представляющими собой значения искомой функции в узлах сетки. Система уравнений (2.28), (2.29), заменяющая приближенно дифференциальную краевую задачу (2.24), (2.25) обычно называется разностной схемой. Решить эту систему можно каким-либо общим численным методом. Однако схема (2.28), (2.29) имеет специфический вид и ее можно эффективно решить специальным методом, называемым методом прогонки. Специфичность системы заключается в том, что уравнения ее содержат три соседних неизвестных и матрица этой системы является трехдиагональной.
Преобразуем уравнения (2.28):
. (2.30)
Введя обозначения
получим
, (i=0, 1, ., n-2). (2.31)
Краевые условия по-прежнему запишем в виде
. (2.32)
Метод прогонки состоит в следующем.
Разрешим уравнение (2.31) относительно :
. (2.33)
Предположим, что с помощью полной системы (2.31) из уравнения исключен член, содержащий. Тогда уравнение (2.33) может быть записано в виде
, (2.34)
где и должны быть определены. Найдем формулы для этих коэффициентов. При i=0 из формулы (2.33) и краевых условий (2.32) следует, что
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах