Решение систем дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка
, (2.7)
где С0 – константа устойчивости, p – порядок апроксимации.
Поэтому для увеличения точности решения необходимо уменьшить шаг сетки h.
На практике применяется множество видов конечно-разностных схем, которые подразделяются на одношаговые, многошаговые схемы и схемы с дробным шагом.
Одношаговые схемы <
p>– Метод Эйлера
Заменяем интеграл в правой части уравнения (2.5) по формуле левых прямоугольников:
(2.8)
Получим:
, (2.9)
где k=0,1,2,…,n.
Схема явная устойчивая. В силу того, что формула для левых прямоугольников имеет погрешность второго порядка, точность ε(h) первого порядка.
– Неявная схема 1-го порядка
Используя формулу правых прямоугольников, получим:
(2.10)
Эта схема неразрешима в явном виде относительно , поэтому проводится итерационная процедура:
, (2.11)
где s=1,2,… - номер итерации. Обычно схема сходится очень быстро – 2-3 итерации. Неявная схема первого порядка эффективнее явной, так как константа устойчивости С0 у неё значительно меньше.
– Метод Эйлера-Коши
Вычисления проводятся в два этапа : этап прогноза и этап коррекции.
На этапе прогноза определяется приближенное решение на правом конце интервала по методу Эйлера:
(2.12)
На этапе коррекции, используя формулу трапеций, уточняем значение решения на правом конце:
(2.13)
Так как формула трапеций имеет третий порядок точности, то порядок погрешности апроксимации – равен двум.
– Неявная схема 2-го порядка (метод Эйлера-Коши)
Используя в (2.5) формулу трапеций, получим:
(2.14)
Схема не разрешена в явном виде, поэтому требуется итерационная процедура:
, (2.15)
где s=1,2,… – номер итерации. Обычно схема сходится за 3-4 итерации.
Так как формула трапеций имеет третий порядок точности, то погрешность апроксимации – второй.
Схемы с дробным шагом
– Схема предиктор-корректор (Рунге-Кутта) 2-го порядка
Используя в (2.5) формулу средних, получим:
,(2.16)
где – решение системы на середине интервала [xk, xk+1] . Уравнение явно разрешено относительно , однако в правой части присутствует неизвестное значение . Поэтому сначала расчитывают (предиктор):
. (2.17)
Затем расчитывают (корректор) по формуле (2.16). Схема имеет первый порядок погрешности.
– Схема Рунге-Кутта 4-го порядка
Используя в (2.5) формулу Симпсона, получим:
(2.18)
Наиболее часто рассчитывают неявное по уравнение по следующей схеме:
Сначала рассчитывают предиктор вида:
(2.19)
затем корректор по формуле:
(2.20)
Поскольку формула Симпсона имеет пятый порядок погрешности, то точность ε(h) – четвёртого порядка.
Многошаговые схемы
Многошаговые методы решения задачи Коши характеризуются тем, что решение в текущем узле зависит от данных не в одном предыдущем или последующем узле сетки, как это имеет место в одношаговых методах, а зависит от данных в нескольких соседних узлах.
Идея методов Адамса заключается в том, чтобы для повышения точности использовать вычисленные уже на предыдущих шагах значения
Если заменим в (2.5) подинтегральное выражение интерполяционным многочленом Ньютона, построенного по узлам , то после интегрирования на интервале получим явную экстраполяционную схему Адамса. Если заменим в (2.5) подинтегральное выражение на многочлен Ньютона, построенного по узлам , то получим неявную интерполяционную схему Адамса.
– Явная экстраполяционная схема Адамса 2-го порядка
(2.21)
Схема двухшаговая, поэтому необходимо для расчётов найти по схеме Рунге-Кутта 2-го порядка , после чего , , … вычисляют по формуле (2.21)
– Явная экстраполяционная схема Адамса 3-го порядка
(2.22)
Схема двухшаговая, поэтому необходимо сперва найти и по схеме предиктор-корректор 4-го порядка, после чего , , … вычисляют по формуле (2.22).
3. Описание используемого метода
Для решения системы дифференциальных уравнений выбрана неявная схема Адамса 3-го порядка, как одна из наиболее точных конечноразностных схем для решения задачи Коши. Чтобы прийти к неявной схеме Адамса, заменим подинтегральное выражение в уравнении:
(3.1)
интерполяционным многочленом Ньютона 2-го порядка, вида:
(3.2)
После интегрирования полученного выражения на интервале , приходим к уравнению неявной схемы Адамса 3-го порядка:
. (3.3)
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах