Математический расчет объема выпуска продукции
Задача №11
G=5
N=25
Завод выпускает изделия трех моделей (1, 2 и 3). Для изготовления используются 2 вида ресурсов А и В, запасы которых составляют 400 и 600 единиц. Расход ресурсов на одно изделие каждой модели приведен в таблице:
span=3 valign=top >
Расход ресурса на одно изделие | |||
Изделие 1 |
Изделие 2 |
Изделие 3 | |
Ресурс А |
G=5 |
3 |
5 |
Ресурс В |
4 |
2 |
7 |
Трудоемкость изготовления изделия 1 вдвое больше, чем изделия модели 2 и в трое больше, чем модели 3. Численность рабочих завода позволяет выпускать 150 изделий модели 1 (если не одновременно изделия моделей 2 и 3). Анализ условий сбыта показывает, что минимальный спрос на продукцию завода составляет 50, 50 и 30 изделий моделей 1, 2 и 3 соответственно. Удельные прибыли от реализации изделий 1, 2 и 3 составляют N=25, 20 и 50$ соответственно.
Определить объемы выпуска изделий каждой модели, при которых прибыль будет максимальна.
Необходимо:
1) Составить математическую модель задачи целочисленного программирования.
2) Решить задачу симплекс-методом.
3) Произвести постоптимальный анализ.
4) Сформулировать двойственную задачу и от финального решения прямой задач перейти к решению двойственной задачи.
5) Найти целочисленное решение методом отсечения (достаточно пяти итераций).
1) Составим математическую модель задачи целочисленного программирования
Пусть х1 -выпущенное количество изделий модели 1
х2- выпущенное количество изделий модели 2
х3- выпущенное количество изделий модели 3
Хотим найти такой ассортимент выпускаемых товаров, при котором прибыль будет максимальна Прибыль от продаж 1 единицы каждого изделия 25, 20 и 50$ Записываем функцию цели:
Сырье которое используем в ходе производства ограничено запасами, построим ограничения по сырью, используя данные приведенные в таблице:
Численность рабочих позволяет выпускать только 150 единиц товара №1 если не производить в это же время товары 2 и 3.
Трудоемкость товара 1 вдвое больше чем товара 2 и втрое больше чем товара 3
По условию задачи сказано, что минимальный спрос на продукцию завода составляет 50, 50 и 30 изделий моделей 1, 2 и 3 соответственно:
Запишем все в математическую модель задачи:
2. Решим данную задачу симплекс методом
Перепишем условие мат. Модели таким образом, чтоб все ограничения задачи имели один знак. Для классической задачи МАКСИМУМ, знак ограничений должен быть типа «≤»
Для того что б последние 3 неравенства были такие как нам надо, домножаем их на «-1»
Перейдем к каноническому виду, для этого необходимо от неравенств-ограничений перейти к ограничениям-равенствам. Вводим дополнительные переменные. Так как все неравенства типа «≤», то дополнительные переменные вводим со знаком «+»
х1, х2, х3- свободные переменные
х4, х5, х6, х7, х8, х9- базисные переменные
Составим и заполним 1-ую симплексную таблицу
БП |
C1=25 |
С2=20 |
C3=50 |
C4=0 |
C5=0 |
C6=0 |
C7=0 |
C8=0 |
C9=0 | |||
Сб |
Вi |
A1 |
А2 |
A3 |
A4 |
A5 |
A6 |
A7 |
A8 |
A9 | ||
1 |
A4 |
0 |
400 |
5 |
3 |
5 |
1 |
0 |
0 |
0 |
0 |
0 |
2 |
A5 |
0 |
600 |
4 |
2 |
7 |
0 |
1 |
0 |
0 |
0 |
0 |
3 |
A6 |
0 |
150 |
1 |
1/2 |
1/3 |
0 |
0 |
1 |
0 |
0 |
0 |
4 |
A7 |
0 |
-50 |
-1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
5 |
A8 |
0 |
-50 |
0 |
-1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
6 |
A9 |
0 |
-30 |
0 |
0 |
-1 |
0 |
0 |
0 |
0 |
0 |
1 |
∆j=W(j)-cj |
0 |
-25 |
-20 |
-50 |
0 |
0 |
0 |
0 |
0 |
0 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах