Стабильность и сроки годности лекарственных средств
2. Построение графика зависимости в аррениусовых координатах — !"(1/7). Используя полученные значения различных температурах, строят график зависимости между логарифмом константы скорости реакции (-\%К) и обратным значением абсолютной температуры (1/7). Прямолинейная зависимость графика позволяет путем экстраполяции определить значения для 20°С (или другой заданной температуры) с последующ
им вычислением значения константы скорости К.
Константу скорости реакции разложения ЛВ можно рассчитать не только по графику, но и по выведенной из уравнения Аррениуса формуле:
|
где Кт2 и Кп — константы скорости реакции при температурах 7^ и 7/.
Определив константу скорости реакции при более высокой температуре 72, можно рассчитать константу скорости для комнатной (или другой заданной) температуры Ту. При расчетах исходят из предположения, что энергия активации Е для данной реакции не зависит от температуры (или меняется незначительно).
3. Расчет энергии активации Е процесса разложения исследуемого Л В и вычисление эмпирической константы А уравнения Аррениуса.
|
По двум константам скорости реакции К1 и К2 (при условии, что К1 > К2), соответственно установленным при двух различных температурах Т/ и Т2( Т/> Т2), вычисляют энергию активации Е:
4. Вычисление времени разложения ЛВ (при заданной температуре) по соответствующему кинетическому уравнению и полученной величине К. По найденному значению А"рассчитывают время и в течение которого происходит разложение ЛВ при 20°С (или другой заданной температуре). Если процесс представляет собой химическую реакцию первого порядка, то расчет ведут по уравнению
|
где со — концентрация реагирующего вещества; с, — концентрация этого вещества, прореагировавшего к моменту времени Л
9. Пути повышения стабильности лекарственных средств
Методы стабилизации можно разделить на три группы: физические, химические и антимикробные. Они нередко дополняют друг друга.
Методы физической стабилизации. Эти методы основаны на изолировании ЛВ от влияния на их стабильность внешних факторов. Методы используют для замедления химических процессов, происходящих при разложении ЛВ (гидролиза, окисления-восстановления, изомеризации и др.), а также для предотвращения микробного загрязнения ЛС. Так, замедление реакции гидролиза ЛВ можно достигнуть максимальным снижением влажности. Это позволяет нередко увеличивать срок годности в десятки раз.
Существуют различные способы максимального обезвоживания ЛС. Наиболее широко используют ампулирование или герметизацию во флаконах предварительно обезвоженных и простерилизованных ЛВ или ЛФ. Их растворяют непосредственно перед применением. Довольно часто используют неводные растворители (пропиленгликоль, полиэтиленгликоль и др.) для приготовления стабилизированных ЛФ.
Можно повышать стабильность ЛВ, совершенствуя технологический режим процесса получения, повышая степень чистоты исходных и промежуточных продуктов. Существуют и другие пути повышения стабильности ЛФ в условиях промышленного производства. Это приготовление и ампулирование ЛС в токе инертных газов, получение жидких ЛФ в виде лиофилизированных порошков, приготовление сухих суспензий и эмульсий, применение новых способов стерилизации, подбор основ, растворителей, эмульгаторов, консервантов, антноксидантов и других вспомогательных веществ, обеспечивающих высокую стабильность, использование одноразовых герметических упаковок. Повышает до 2 лет сроки хранения использование различных ЛВ в составе глазных пленок. Растворы в шприц-тюбиках или тюбиках-капельницах имеют срок хранения 1-3 года.
На ЛВ, содержащиеся в таблетках, оказывают влияние не только внешние факторы (температура, влага, ультрафиолетовое облучение и т.д.), но и наполнители, вспомогательные вещества, гранулирующие жидкости, тип грануляции, технология изготовления таблеток. Вспомогательные вещества могут вступать с ЛВ в различные физические и химические взаимодействия, выступать в роли катализатора и т.д. Из физических процессов наиболее часто в таблетках может происходить явление адсорбции ЛВ такими наполнителями, как крахмал, производные метилцеллюлозы и др. Для физической стабилизации таблеток используется применение различного рода покрытий, защищающих Л В от воздействия внешних факторов, а также от микробной загрязненности.
Если процесс представляет собой реакцию второго порядка и реагирующие вещества взяты в эквивалентных количествах, то время хранения рассчитывают по уравнению
Важной характеристикой, определяющей защитные свойства упаковочных материалов, является светопроницаемость. Особенно большое значение имеет проницаемость упаковки для УФ-лучей, которые интенсифицируют процессы деструкции самих ЛВ и могут вызывать деструктивные изменения в полимерных материалах. Они воздействуют на карбонильные и ароматические циклы, входящие в структуру полимеров, и приводят к образованию продуктов распада карбонильного. гидроксильного и пероксидного типа, способных вызвать усиление поглощения УФ-лучей.
Методы химической стабилизации. Эти методы основаны на введении в лекарственную форму веществ, предотвращающих или замедляющих химические процессы (гидролиз, окисление, каталитическое влияние примесей), приводящие к разложению ЛВ. Стабильность ЛС химическим путем можно повышать после предварительного исследования кинетичи процессов, происходящих в них под влиянием различных факторов. Если известен механизм химической реакции, то можно предусмотреть кинетику разложения ЛВ в зависимости от влияния растворителя, pH среды, температуры, влажности, света. Исходя из этого, можно рассчитывать или устанавливать опытным путем оптимальные условия, в которых ЛС будет наиболее стабильным.
Обычно для химической стабилизации используют антиоксиданты, комплексообразователи и другие стабилизаторы, которые добавляют в ЛФ.
Антиоксиданты, являясь сильными восстановителями, обладают более высокой реакционной активностью по отношению к кислороду, чем ЛВ. Точнее говоря, значения окислительно-восстановительных потенциалов у антиоксидантов выше, чем у большинства ЛВ. Окисляясь сами, антиоксиданты предохраняют ЛВ от окисления. В качестве антиоксидантов используют натрия гидросульфит, аскорбиновую кислоту, тиомочевину и др.
Восстановительные свойства многих антиоксидантов обусловлены присутствием или образованием сульфит-ионов. Механизм защитного действия сульфитов сводится к разложению гидропероксидных соединений, образующихся в процессе окисления органических ЛВ. Действие сульфитов при стабилизации связано с их способностью окисляться значительно быстрее, чем стабилизируемое ЛВ. При этом из ЛФ (водный раствор) удаляется кислород. Прямая реакция между сульфит-ионом и кислородом протекает с низкой скоростью, так как молекулы находятся в разных мультиплетных состояниях. Чистые растворы сульфита натрия не окисляются кислородом, но присутствие незначительных количеств ионов меди (10"'3 ммоль/л) значительно ускоряет реакцию. Аналогичное влияние оказывает даже небольшая примесь других ионов металлов.
Другие рефераты на тему «Медицина»:
- Становление и развитие ветеринарного акушерства в России
- Доброкачественные опухоли женских половых органов
- Физиологические основы для применения ЛФК для лечения заболеваний сердечно-сосудистой системы
- Действие радиации на иммунную систему
- Лямблиоз - сущность, эпидемиология, патофизиология, патогенез
Поиск рефератов
Последние рефераты раздела
- Особенности лечения и тракционно-экстензионной терапии на аппарате Kinetrac KNX-7000
- Остеохондроз, методики лечения
- Тракционно-экстензионная терапия у больных остеохондрозом пояснично-крестцового отдела позвоночника
- Болезни, возникающие от курения. Профилактика курения
- Болезни органов дыхания
- Болезни желчевыводящих путей и печени
- Анатомия и физиология артерий нижних конечностей. Этиология и патогенез