Использование современной компьютерной техники и программного обеспечения для решения прикладных задач в области геодезических измерений
Аннотация
Базовые знания в области информатики и практические навыки работы на персональном компьютере позволяют эффективно применять современное программное обеспечение для решения прикладных задач в области геодезии. В данной пояснительной записке это продемонстрировано расчетами в табличном редакторе MS Excel 2007, математического пакета MathCad 14.0 и с помощью яз
ыка программирования Turbo Pascal. Представленные в данной работе программы позволяют быстро получать результаты при варьировании исходных данных в определенных диапазонах.
Объем пояснительной записки – 58 стр.
Число таблиц–3, иллюстраций–33, библ. список из 5 наименований.
Оглавление
Введение
1. Обратная геодезическая задача
1.1 Теоретические сведения
1.2 Постановка задачи
1.3 Исходные данные
1.4 Блок-схема алгоритма
1.5 Текст программы
1.6 Результаты работы программы
1.7 Проверка в MS Excel
1.8 Проверка в MathCad
1.9 Анализ результатов
2. Прямая угловая засечка
2.1 Теоретические сведения
2.2 Постановка задачи
2.3 Исходные данные
2.4 Блок-схема алгоритма
2.5 Текст программы
2.6 Результаты работы программы
2.7 Проверка в MS Excel
2.8 Проверка в MathCad
2.9 Анализ результатов
3. Обратная геодезическая засечка
3.1 Теоретические сведения
3.2 Постановка задачи
3.3 Исходные данные
3.4 Блок-схема алгоритма
3.5 Текст программы
3.6 Результаты работы программы
3.7 Проверка в MS Excel
3.8 Проверка в MathCad
3.9 Анализ результатов
5. Решение СЛАУ методом Гаусса 44
4.1 Теоретические сведения
4.2 Постановка задачи
4.3 Исходные данные
4.4 Блок-схема алгоритма
4.5 Текст программы
4.6 Результаты работы программы
4.7 Проверка в MS Excel
4.8 Проверка в MathCad
4.9 Анализ результатов
Заключение
Библиографический список
Введение
Автоматизация геодезических вычислений необходима в различных областях, связанных с геодезией. Предпосылки этому создает тотальная продолжающаяся информатизация практически всех сфер функционирования общества, а также повышающаяся доступность компьютерных технологий и снижение стоимости их производства. В геодезии автоматизация необходима в первую очередь, потому что позволяет решать практические задачи самого различного характера с большей эффектитвностью и производительностью, а также увеличивает скорость выполнения и себестоимость работ по камеральной обработке результатов съемок.
При высокоточных геодезических работах объем вычислений становится весьма большим. Это связано со спецификой этих работ- высокая точность требует специальных методов как проведения собственно измерений, так и обработки их результатов: применения специальных методов уравнивания, введения большого числа поправок, постоянного прослеживания всех получающихся результатов (в том числе и с целью контроля их правильности), и т.д. Это, естественно, рождает за собой определенные проблемы, основные из которых - это недопущение ошибок, и длительное время самой обработки из-за ее большого объема. Хотя все процессы обработки построены так, чтобы максимально снизить риск появления ошибок (тут сказывается учет большого опыта геодезистов - процессы построены таким образом, чтобы сразу заметить неверный результат и вовремя найти и исправить ошибку), но так как все-таки исполнителем работ является человек, то, естественно, нельзя полностью гарантировать совершенное отсутствие ошибок. Конечно, потом они будут обнаружены и исправлены, но сам процесс поиска может занять значительное время. Когда обработку выполняет человек с большим опытом проведения подобных работ, то риск подобных ошибок снижается, уменьшается и время, требуемое на проведение обработки. Но когда подобную работу выполняет человек, не имеющий подобного опыта, то возможность ошибиться, наоборот, многократно возрастает. Это при том, что камеральная обработка в принципе является достаточно легко формализуемым процессом. В связи с этим встает вопрос об автоматизации геодезических вычислений. В самом деле, не логичнее ли поручить исполнение “механической” работы компьютеру, что даст, во-первых, большую выгоду во времени а, во-вторых, это дает некую гарантированность от ошибок в вычислених - попросту говоря, машина никогда не ошибется при выполнении математической операции. (Тут, правда, встает проблема правильности и безошибочности используемого алгоритма, но это тема для отдельной работы.). На самом деле, практика показала преимущество подобного подхода, в настоящее время ручная обработка результатов геодезических измерений встречается крайне редко.
Подводя краткий итог всему вышесказанному, можно сделать вывод, что в целом автоматизация геодезических вычислений необходима в различных областях, связанных с геодезией. Предпосылки этому создает тотальная продолжающаяся информатизация практически всех сфер функционирования общества, а также повышающаяся доступность компьютерных технологий и снижение стоимости их производства. В геодезии автоматизация необходима в первую очередь, потому что позволяет решать практические задачи самого различного характера с большей эффектитвностью и производительностью, а также увеличивает скорость выполнения и себестоимость работ по камеральной обработке результатов съемок.
Целью выполнения курсовой работы является закрепление устойчивых навыков работы в средах программирования при решении типовых задач в области геодезии. В частности овладеть основными принципами построения алгоритмов, методами вычислений и их реализации на компьютере, приобрести навыки постановки задач, построения математических моделей при обработке экспериментальных данных и их анализ.
В данной работе представлено решение типовых задач с помощью языка программирования Turbo Pascal и табличного процессора Microsoft Excel 2007.
При создании пояснительной записки использован текстовый процессор Microsoft Word 2007.
1. Обратная геодезическая задача
1.1 Теоретические сведения
Обратная геодезическая задача заключается в вычислении дирекционного угла и расстояния R= | AB | по заданным на плоскости декартовым координатам x, y двух точек А и В. Дирекционный угол, в конечном итоге, должен быть представлен в градусной мере, как это принято в геодезии. Расстояние между точками определяется через найденный дирекционный угол.
Пусть даны две точки А и В (рис. 1.1), координаты которых соответственно
Согласно схеме, показанной на рис. 1.1, приращения координат определяются:
(1.1)
Затем находят величину румба.
(1.2)
Далее по знакам приращения координат находят название четверти, что, в свою очередь, позволяет определить значение дирекционного угла.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности