Анализ стационарных и динамических объектов
Приложение 3. Листинг программы решения задачи анализа динамического объекта с графиками и комментариями, поясняющими использование в программе констант, переменных, массивов, векторов, матриц, функций и т.д.
1. Анализ линейных стационарных объектов
Цель работы: исследовать параметры линейных стационарных объектов, описываемых системами линейных алгебраических уравн
ений, используя для их решения средства матричной алгебры и специальные функции системы математических расчетов MathCAD.
Содержание работы:
1) изучить теоретические положения (раздел 1.1), раскрывающие структуру линейных объектов, их математическое описание и решение задачи анализа такого рода объектов;
2) выполнить индивидуальное задание согласно предусмотренной в разд.1.2 последовательности выполнения работы;
3) оформить описание раздела по контрольной работе согласно требованиям задания.
1.1. Краткие теоретические сведения
1.1.1. Иерархические уровни описания объектов
Описания технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и возможностями оперирования описаниями в процессе их преобразования с помощью имеющихся средств проектирования. Однако выполнить это требование в рамках некоторого единого описания, не разделяя его на некоторые составные части, удается лишь для простых изделий. Как правило, требуется структурирование описаний и соответствующее разделение представлений о проектируемых объектах на иерархические уровни и аспекты.
Разделение описаний по степени детализации отображаемых свойств и характеристик объекта лежит в основе блочно-иерархического подхода к проектированию и приводит к появлению иерархических уровней в представлениях о проектируемом объекте.
На каждом иерархическом уровне используются свои понятия системы и элементов.
На уровне 1 (верхнем уровне) подлежащий проектированию сложный объект S рассматривается как система S из n взаимосвязанных и взаимодействующих элементов
Среди свойств объекта, отражаемых в описаниях на определенном иерархическом уровне, различают свойства систем, элементов систем и внешней среды, в которой должен функционировать объект. Количественное выражение этих свойств осуществляется с помощью величин, называемых параметрами. Величины, характеризирующие свойства системы, элементов системы и внешней среды, называют соответственно выходными, внутренними и внешними параметрами. Например, для электронного усилителя выходными параметрами являются полоса пропускания, коэффициент усиления; внутренними параметрами – сопротивления резисторов, емкости конденсаторов, параметры транзисторов; внешними параметрами – сопротивление и емкость нагрузки, напряжение источников питания.
Обозначим количества выходных Si. Каждый из элементов в описании уровня 1 представляет собой сложный объект, который, в свою очередь, рассматривается как система Si на уровне 2. Элементами систем Si являются объекты Sij, где j=1,2…, mi (mi – количество элементов в описании системы Si). Подобное разделение продолжается вплоть до получения на некотором уровне элементов, описания которых дальнейшему делению не подлежат. Такие элементы по отношению к объекту S называют базовыми элементами.
1.1.2. Классификация параметров объектов
Внутренних и внешних параметров через m, n, l, а векторы этих параметров соответственно через Y=(y1,y2,…,ym), X=(x1,x2,…,xn), Q=(q1,q2,…,ql). Свойства системы зависят от внутренних и внешних параметров, т.е. имеет место функциональная зависимость:
Y=F(X,Q). (1.1)
1.1.3. Структура и математическая модель объекта
Структура объекта – это перечень типов элементов, составляющих объект, и способа связи элементов между собой в составе объекта.
Математическая модель (ММ) технического объекта – это система математических объектов (чисел, переменных, матриц, множеств и т.п.) и отношений между ними, отражающая некоторые свойства технического объекта. Наличие ММ позволяет легко оценивать выходные параметры по известным значениям векторов X и Q. Такая система соотношений (1) является примером математической модели объекта. Однако, существование зависимости (1.1) не означает, что она известна разработчикам и может быть представлена именно в таком явном относительно вектора Y виде. Как правило, ММ в виде (1.1) удается получить только для очень простых объектов. Типичной является ситуация, когда математическое описание процессов в проектируемом объекте задается моделью в форме системы уравнений. Ряд технических объектов в установившемся (стационарном) состоянии (режиме) может быть описан системами линейных алгебраических уравнений.
Такого рода объекты (например, объект, показанный на рис 1.1) относятся к классу линейных стационарных объектов.
|
|
|
|
Рис. 1.1. Структура линейного стационарного объекта
Структура данного объекта определяется двумя сумматорами S1 и S2, четырьмя линейно– усилительными блоками а11 , а12 , а21 , а22 и системой связей между ними.
Математическая модель такого рода объекта представляет собой систему линейных алгебраических уравнений и имеет вид:
а11х1 +а12х2=в1;
а21х1 +а22х2=в2;
1.1.4. Анализ объектов
Задача анализа объектов состоит в определении свойств и исследовании работоспособности объекта по его описанию.
При одновариантном анализе задаются значения внутренних и внешних параметров, требуется определить значения выходных параметров объекта.
При одновариантном анализе задается также некоторая точка в пространстве внутренних параметров и требуется в этой точке определить значения выходных параметров. Подобная задача обычно сводится к однократному решению уравнений, составляющих математическую модель, что и обусловливает название этого вида анализа.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности