Электромагнитные волны между параллельными идеально проводящими плоскостями
.
Для второго уравнения (1.9) решение удобно представить в виде линейной комбинации показательных функций:
.
Следовательно,
((. (1.11)
Чтобы найти входящие в (1.11) неизвестные коэффициенты и постоянную разделения , используем граничные условия (1.6) . Поставив туда значение будем иметь
(1.12)
при
Условия (1.12), очевидно, могут быть удовлетворены, если положить = 0. В этом случае проекция , как видно из (1.4), обращается в нуль не только на проводящих плоскостях, но и во всех точках пространства между ними. Тогда из (1.10) следует, что (величина , как известно, носит название постоянной распространения).
Подставляя найденные значения и в выражения (1.11) и (1.4), получим:
(1.13)
Здесь мы положили, что .
Таким образом, решение системы уравнений (1.3) при определяет электромагнитное поле в виде суммы двух бегущих волн, распространяющихся по оси z в противоположных направлениях.
Если полагать, что источник электромагнитной энергии находится где-то в точках, то в линии, естественно, будет существовать только одна волна, распространяющаяся в направлении от к . В этом случае выражения для компонент электромагнитного поля принимают вид:
(1.14)
Из равенств (1.14) вытекает, что векторы электромагнитного поля полученной волны не имеют составляющих на направление распространения. Следовательно, электромагнитное поле, определяемое уравнениями (1.4), (1.5), при вырождается в волну поперечно-электромагнитного типа.
Фазовая скорость волны (1.14) совпадает со скоростью распространения плоской волны в свободном пространстве с параметрами среды :
Для характеристики направляющей системы целесообразно ввести величину, называемую характеристическим сопротивлением. Последнее определяется как отношение поперечной проекции векторак перпендикулярной ей поперечной
проекции вектора .
В нашем случае характеристическое сопротивление будет равно
т. е. оно совпадает с волновым сопротивлением среды для плоской волны. Такое совпадение нельзя считать случайным, ибо волна ТЕМ в рассматриваемой системе аналогична по своей структуре плоской волне в неограниченном пространстве. Действительно, если в поле плоской волны, распространяющейся в неограниченном пространстве, внести две бесконечно-тонкие проводящие плоскости, перпендикулярные вектору , то граничные условия (1.1) автоматически оказываются выполненными.
Электромагнитное поле (1.14) в пространстве между проводящими плоскостями имеет волновой характер при любом значении частоты колебаний. Иными словами, поперечная волна в направляющей системе может существовать при любой частоте колебаний поля, причем распространение этой волны происходит со скоростью, зависящей лишь от параметров среды.
Полученное выше решение уравнений (1.3) оказывается не единственно возможным. В самом деле, условиям (1.6), (1.12) можно также удовлетворить если , но
при
Легко убедиться, что левая часть последнего равенства будет обращаться в нуль при , если
откуда вытекает, что
Постоянная распространения , которую в дальнейшем целесообразно обозначить, согласно (1.10) будет равна
(1.15)
Подставив найденное значение в выражение (1.12) и учитывая, что , получим
Аналогично ранее исследованному случаю поперечной волны мы можем положить . Тогда, в соответствии с (1.5), выражения для проекций векторов поля будут иметь вид:
(1.16)
Здесь коэффициент мы заменили на .
Так как по определению — любое целое число, то в пространстве между параллельными проводящими плоскостями, помимо ранее найденной волны ТЕМ, может существовать бесчисленное множество полей поперечно-магнитного типа, характеризуемых различными значениями (поля ).
Из выражений (1.16) следует, что распределение поля вдоль оси х имеет форму стоячей волны. Характер изменения поля на интервале определяется числом (индексом) . Согласно (1.16) при различных на промежутке между плоскостями будет укладываться различное число «полуволн» поля, причем это число как раз и равно . На рис. 1.2 изображены кривые изменения вдоль оси х, соответствующие разным . (Максимальные значения для различных «гармоник» здесь выбраны произвольно. Начальные фазы взяты или одинаковыми или отличающимися одна от другой на )
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода