Статистическая механика классических систем
(8.24)
Выражение (8.24) представляет распределение Максвелла по скоростям частиц.
С математической точки зрения распределение (8.23) и, соответственно (8.21), представляет распределение Гаусса около среднего значения с дисперсией
src="images/referats/9147/image074.png"> (8.25)
Выражение (8.25) было получено без привлечения каких-либо дополнительных соображений, поэтому позволяет установить связь между температурой со средней кинематической энергией частиц. Из (8.25) непосредственно следует:
Тогда:
,
Отсюда
, (8.26)
В некоторых работах соотношение (8.26) обосновывается с помощью дополнительных соображений и позволяет интерпретировать температуру как меру средней кинетической энергии . Однако соотношение (8.26), во-первых, получено только для классических систем. Во-вторых, интерпретация температуры как мера средней кинетической энергии частиц требует привлечения других механизмов ( не связанных с понятием температуры) для определения этой энергии.
Поэтому соотношение (8.26) следует рассматривать как интегральный, но все-таки частный результат.
Далее рассмотрим идеальный газ, находящийся во внешнем потенциальном поле. Гамильтониан такой системы оказывается равным:
(8.27)
Подставляя (8.27) в (8.10) с точностью до постоянного сомножителя имеем:
(8.28)
Таким образом, гиббсовское распределение по координатам и импульсам распадается на 2N независимых распределений по координатам и импульсам каждой частицы. Распределения по импульсам представляет собой полученное выше распределение Максвелла (8.). Рассмотрим более подробно распределение по координатам:
(8.29)
Это распределение характеризует распределение частиц в поле произвольного потенциала .
В частности, в поле сил тяжести получаем известное барометрическое распределение:
(8.30)
Аналогичным образом выбирая в качестве потенциал стенок, ограничивающих объем V,
(8.31)
получаем распределение
(8.31)
Использование потенциала (8.31) и соответствующего распределения для классических систем аналогично ограничению области интегрирования по координатной составляющей фазового пространства N-кратно повторенной областью V.
Объединяя в соответствии с (8.28) распределение по координатам (8.29) и импульсам (8.23), получаем распределение по координатам и импульсам для каждой частицы:
(8.33)
или распределение по координатам и скоростям:
(8.34)
Распределение (8.34) часто называют распределением Максвелла – Больцмана.
3.Рассмотрим общую структуру статистического интеграла. В случае отсутствия взаимодействия между частицами () статистический интеграл распадается на произведение одинаковых интегралов по переменным и для каждой частицы.
Для выделения главной асимптотики по N воспользуемся формулой Стирлинга:
т.е. ,
откуда следует
(8.35)
Тогда в пространственно однородном случае в отсутствие внешних полей () и статистический интеграл принимает вид:
(8.36)
Выражение (8.36) позволяет найти вид свободной энергии и основные термодинамические соотношения для системы классических невзаимодействующих частиц. Свободная энергия определяется из (6.13) и равна:
(8.37)
Дальнейшее использование метода термодинамических потенциалов позволяет рассчитать основные термодинамические параметры системы, состояние которой задано параметрами ().
(8.38)
(8.39а)
откуда следует уравнение состояния идеального газа
(8.39б)
(8.40)
Соответственно удельная теплоемкость равна:
(8.41)
Итак, на основе выражения статистического интеграла нами получено уравнение состояния термодинамической системы идеального газа (8.39б) и калорическое уравнение состояния этой системы (8.41).
Заметим, что соотношения (8.36)-(8.41) относятся к классическому идеальному газу, для которого справедливо условие (8.5).
Для неидеального классического газа с учетом межчастичных взаимодействий (), гамильтониан которого имеет вид получаем:
(8.42)
Здесь величина Q определяется из соотношения:
(8.43)
и называется конфигурационным интегралом.
Отсюда следует, что основная проблема теоретического исследования классических неидеальных систем связана с расчетом конфигурационного интеграла Q. Заметим, что этот расчет возможен только в некоторых частных случаях на основе использования приближенных метод
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода