Классификация и общие принципы построения и применения информационных измерительных систем

Характер входных величин (независимо от их физической природы) отражается в следующих признаках:

- количество величин;

- поведение во времени: неизменное или изменяющееся;

- расположение в пространстве: сосредоточенное или распределенное;

- представление величин: дискретное или непрерывное;

- энергетический признак: активность, пассивность;

- характер помех, суммирующихс

я с величиной: независимые помехи; помехи, зависимые от исследуемых величин.

Остальные признаки связаны в основном с конструкцией ИИС и слабо влияют на их функциональное назначение.

Классификация по видам выходной информации включает в себя следующие классы:

- характер выходной информации: измерительная информация (именованные числа, их отношения, графики и т. п.), количественные суждения (выводы по результатам контроля, диагностики, идентификации);

- степень обработки выходной информации: результаты оценки одного показателя; показатели, характеризующие функциональные зависимости; статистические показатели ит. д.;

- потребитель информации: человек-оператор, ЭВМ, АСУ.

Различают следующие виды структурных схем ИИС:

- последовательного действия (одноканальная система);

- параллельного действия (многоканальная система);

- параллельно-последовательного действия (с коммутатором на входе);

- мультиплицированная структура.

При классификации по принципам построения используются следующие признаки:

- наличие специального канала связи;

- унификация состава системы;

- порядок выполнения операций: последовательный или параллельный;

- наличие или отсутствие структурной и информационной избыточности;

- наличие или отсутствие адаптации, характер адаптации;

- наличие или отсутствие информационной обратной связи;

- вид используемых сигналов: аналоговые или кодоимпульсные;

- наличие стандартного интерфейса.

В качестве отдельного класса рассматриваются телеметрические системы. По своим функциям они могут относиться к любому из перечисленных выше классов. Специфика этих систем заключается в том, что они предназначены для телеизмерений — измерений на расстоянии и, следовательно, имеют более протяженные каналы связи, чем другие ИИС.

Описанная система классификации используется довольно широко. Однако ее значение в основном терминологическое, поскольку система проектируется исходя из решаемых задач и технико-экономических ограничений, а затем полученные результаты могут быть отнесены к конкретному классу. Практическая эффективность этой классификации невелика.

2. Общие принципы построения и применения ИИС

Создаваемая ИИС должна обеспечивать достижение поставленных перед ней целей. Эти цели могут быть достигнуты различными способами. Поэтому должны быть определены критерии сравнения различных вариантов — количественные показатели качества ИИС. Эти показатели, как и для всех сложных устройств и систем, имеют многоплановый характер.

Основным показателем качества ИИС как СИ, отражающим ее назначение и специфику конкретного применения, является показатель достоверности выдаваемой информации. Для измерительных систем (включая статистические) показателем достоверности, как и для всех СИ, является погрешность измерения или неопределенность результата измерений. Для систем контроля и систем распознавания образов достоверность принимаемых решений характеризуется вероятностями ошибок. Более сложна оценка достоверности результатов, выдаваемых системами технической диагностики и системами идентификации. Однако она тоже сводится к некоторым вероятностным характеристикам.

Свойства ИИС как информационной системы характеризуются количеством выдаваемой информации, скоростью выдачи и информационной избыточностью. Эти показатели могут непосредственно интересовать потребителя. Следует отметить, что возможности современной вычислительной техники и каналов передачи информации таковы, что во многих случаях обеспечение требуемых информационных характеристик достигается без особых усилий.

ИИС характеризуется также общетехническими показателями: габариты, масса, потребляемая мощность, показатели безопасности, надежность и др. Определенной спецификой среди этих показателей обладает надежность, так как она определяется не только надежностью технических средств и общей структурой ИИС, но зависит и от свойств программно-математического обеспечения.

При разработке и применении ИИС не следует упускать из виду экономические аспекты. При этом с экономической точки зрения необходимо учитывать два противоречивых момента. ИИС в силу своей сложности является более дорогим средством измерения. В то же время ее применение может значительно повысить производительность и достоверность контрольно-измерительных операций, что приведет к повышению качества выпускаемой продукции, то есть принести значительный экономический эффект. Кроме того, гибкость ИИС позволяет с ее помощью заменить несколько традиционных СИ, что также увеличивает экономический эффект от ее применения. Эти факторы доступны достаточно точному экономическому анализу. Менее очевидна экономическая оценка положительного эффекта возможности исследования сложных объектов, недоступных для более простых СИ.

При проектировании ИИС, как и систем любого другого вида, необходимо руководствоваться системотехническим подходом [8]. При этом следует иметь в виду, что ИИС представляет собой некоторую иерархическую структуру, верхним уровнем которой является вычислительное устройство, а нижним — первичные измерительные преобразователи, контактирующие с ИО. При наличии обратной связи передача информации происходит не только от нижних уровней к верхним, но и в обратном направлении. На промежуточных уровнях также могут находиться микропроцессорные вычислительные устройства. Иерархичность многовходовых (многоканальных) ИИС очевидна, но даже простейшие одноканальные ИИС имеют структуру, которую можно считать иерархической. При этом следует различать два вида иерархических структур:

- функциональную структуру (датчики, вторичные преобразователи, каналы связи, центральная ЭВМ);

- конструктивную структуру (система, блок, плата, элемент).

Благодаря миниатюризации компонентов электронной и вычислительной техники структура второго вида постоянно упрощается при сохранении функциональной структуры.

Организация структуры сложных технических систем должна исходить из нескольких общих принципов.

2.1 Принцип сочетания системности и агрегирования

Этот принцип является основным в создании систем и предполагает обязательный учет двух факторов. Во-первых, система рассматривается как единое целое со своими функциональными, информационными и конструктивными связями и показателями. Во-вторых, образующие систему элементы, сохраняя определенную автономность и заменяемость, должны быть совместимы: конструктивно, информационно (уровни входных и выходных сигналов, интерфейсы), по характеристикам питания, условиям эксплуатации и т. д.

2.2 Принцип однородности иерархического уровня

Страница:  1  2  3  4 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы