Анализ и моделирование цифровых и аналоговых схем
Таблица 3
№ итерации |
Начальное приближение Y0 | |||||
g |
p |
f |
h |
q | ||
0 d> |
1 |
1 |
1 |
1 | ||
1 2 |
0 0 |
1 1 |
0 0 |
1 1 |
1 1 |
Из таблицы 3 видно, что потребовалось два раза обращаться к каждому из пети уравнений модели, прежде чем результат второй итерации, совпадающий с результатом первой итерации, показал, что решение найдено.
Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d,е) с 00100 на 11101 для заданной схемы равно:
Y=(e,g,p,f,h,q)=(0,1,0,1,1).
При использовании событийного метода вычисления на каждой итерации выполняются только по уравнениям активизированных элементов, т.е. элементов, у которых хотя бы на одном входе произошло событие (изменилась входная переменная). В алгоритме событийного метода на каждом шаге вычислительного процесса имеется своя группа активизированных элементов.
В заданном варианте изменения вектора входных переменных изменяются только значения переменных а, b и е, следовательно, на первой итерации при реализации событийного алгоритма анализа должны быть пересчитаны только выходные переменные f и h, в правые части уравнений которых входят аргументами b и d. Если по результатам вычисления значения f и h совпадут с начальным приближением, то решение будет найдено, если хотя бы одна из этих переменных изменится, то на второй итерации должны быть пересчитаны те выходные переменных, в правые части уравнений которых входят изменившиеся в результате первой итерации переменные. Процесс продолжается до тех пор, пока в результате очередной итерации значения рассчитываемых переменных не совпадут с их предыдущими значениями, т.е. до выполнения условия Yi=Yi-1.
Результат анализа заданной схемы по методу простой итерации приведен в таблице 4.
Таблица 4
№ итерации |
Начальное приближение Y0 |
Изменяющиеся переменные |
Активизированные уравнения | |||||
e |
g |
p |
f |
h |
q | |||
0 |
0 |
1 |
1 |
1 |
0 | |||
0 1 2 3 4 5 6 |
0 |
0 1 |
1 1 0 |
1 0 |
1 1 0
|
0 1 1 |
b, d f g h q p - |
4 и 5 2 5 6 3 6 - |
Результат |
0 |
1 |
0 |
0 |
0 |
1 |
Как видно из таблицы 4, на 6-ой итерации результат расчета переменной q совпал с ее предыдущим значением, следовательно решение найдено.
Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d) с 0110 на 0011 при расчете по событийному методу для заданной схемы совпадает с результатом анализа по методу простой итерации и равно:
Y=(e,g,p,f,h,q)=(0,1,0,0,0,1).
Однако, при вычислении по методу простой итерации, потребовалось на каждой итерации вычислять все выходные переменные, т.е. объем вычислений составил 6×6=36 операций. Тот же результат при использовании событийного метода потребовал значительно меньшего объема вычислений, а именно выполнения 8 операций. Таким образом, трудоемкость событийного метода значительно меньше.
Задача №3. Анализ цифровых схем по методам Зейделя
Задание: выполнить анализ заданной схемы по методам Зейделя для заданного изменения вектора входных переменных.
Исходные данные:
Схема:
Заданный вариант изменения вектора входных переменных:
X=(a,b,c,d,e) меняет свое значение с 00100 на 11101
Математическая модель заданной схемы имеет вид:
При реализации анализа по методу Зейделя при вычислении очередного из элементов вектора Yi в правую часть уравнений системы там, где это возможно, подставляются не элементы вектора Yi-1, а те элементы вектора Yi, которые уже вычислены к данному моменту, т.е. итерации выполняются по формуле: Yi=y (Yi,Yi-1, X).
Результат вычислений по методу Зейделя без ранжирования, для исходного произвольного порядка уравнений модели представлен в таблице 5. Для организации вычислений использовалось значение начального приближения вектора выходных переменных Y0, полученное в задаче 2.
Таблица 5
№ итерации |
Начальное приближение Y0 | |||||
g |
p |
f |
h |
q | ||
0 |
1 |
1 |
1 |
1 | ||
1 2 |
0 0 |
1 1 |
0 0 |
1 1 |
1 1 |
Задача №4. Моделирование аналоговых схем (метод узловых потенциалов)
Цель: освоение метода узловых потенциалов моделирования аналоговых схем.
Задание: для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода узловых потенциалов: построить матрицу «узел-ветвь», записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности