Силикагель и его применение в высокоэффективной жидкостной хроматографии
2.5 Анализ полученных результатов
В ходе эксперимента для оценки удерживающей способности химически модифицированных силикагелей на примере вещества эналаприла малеата были использованы колонки на основе цианосилильного силикагеля (Waters RP-CN 4,6х250 мм, Zorbax XDB-CN 4,6х250 мм), а также колонки на основе октадецилсилильного (Waters Symmetry C18 4,6х250 мм, Zorbax SB C18 4,6
х250 мм) и октасилильного (Waters Symmetry C8 4,6х250 мм, Zorbax SB C8 4,6х250 мм) силикагелей. Апробированные колонки имеют одинаковую геометрию (высоту и длину колонки, размер частиц сорбента), но различаются «привитыми» фазами. Также в конце эксперимента для оценки зависимости удерживающей способности от природы самого сорбента была апробирована колонка на основе оксида циркония (IV). Ввиду дороговизны колонок на основе оксида циркония (IV) использовалась колонка размером 4,6х150 мм (Discovery ZR-РBD 4,6х150 мм).
Полученные данные, приведенные в табл. 2, показывают существенные различия в удерживании эналаприла малеата в зависимости от «привитой фазы».
На силикагелях, модифицированных группами С18 и С8 времена удерживания эналаприла малеата достаточно велики для его полного разделения, однако эффективность колонок не соответствует поставленным требованиям (число теоретических тарелок - менее 6000, коэффициент симметрии пика - более 1,7).
Времена удерживания в цианосилильной колонке Waters RP-CN 4,6х250 мм, а также в колонке на основе оксида циркония (IV) Discovery ZR-RBD 4,6х150 мм малы и сопоставимы со временем выхода неудерживаемого компонента. Кроме того, эти колонки отличаются наименьшим числом теоретических тарелок, что указывает на низкую эффективность разделения.
Таким образом, для методики количественного определения эналаприла малеата оптимальной хроматографической колонкой, отвечающей поставленным требованиям (п. 2.4), при данных условиях хроматографирования является колонка размером 4,6х250 мм, заполненная силикагелем цианосилильным для хроматографии [19], с размером частиц 5 мкм Zorbax XDB-CN.
Таблица 2. Экспериментальные данные для вещества эналаприла малеата
Колонка |
Время удерживания |
Коэффициент симметрии пика |
Число теоретических колонок |
Waters RP-CN 4,6х250 мм, 5 мкм |
3.812 |
– |
3504 |
Zorbax XDB-CN 4,6х250 мм, 5 мкм |
6.228 |
1.518 |
6772 |
Waters Symmetry C18 4,6х250 мм, 5 мкм |
7.618 |
2.280 |
5254 |
Waters Symmetry C8 4,6х250 мм, 5 мкм |
9.382 |
2.314 |
6779 |
Zorbax SB C8 4,6х250 мм, 5 мкм |
8.483 |
1.987 |
5035 |
Zorbax SB C18 4,6х250 мм, 5 мкм |
7.724 |
2.313 |
4284 |
Discovery ZR-РBD 4,6х150 мм, 5 мкм |
1.969 |
1.395 |
1343 |
Выводы
В курсовой работе рассмотрены важнейшие области применения силикагеля в промышленности, технике и науке, теоретическое обоснование зависимости адсорбционных свойств силикагеля от способа его получения и дальнейшей обработки, а также применение силикагелей в аналитической высокоэффективной жидкостной хроматографии.
На основании проведенных исследований можно сделать следующие выводы:
-адсорбционная способность силикагелей зависит от пористости структуры: чем меньше размер частиц силикагеля, тем лучше его адсорбционные свойства;
-важнейшим преимуществом силикагеля по сравнению с другими пористыми материалами является возможность изменения его структуры в процессе формирования;
-придание силикагелю специфичности в отношении тех или иных веществ путем химического модифицирования возможно благодаря наличию силанольных и силоксановых групп на его поверхности, что значительно расширяет область его применения;
-одним из наиболее перспективных применений силикагеля является применение его в колонках для ВЭЖХ в качестве неподвижной фазы, ставшее возможным вследствие получения на основании современных технологий силикагелей с размерами частиц 3.5, 5, 7 или 20 мкм;
-неподвижные фазы на основе силикагеля могут существенно отличаться друг от друга: способом получения исходного силикагеля; формой частиц; содержанием примесей в силикагеле; размерами и распределением размеров частиц; размерами пор и распределением пор по размерам; заместителями у атома кремния, расположенными у поверхности силикагеля в «прививке»; плотностью «прививки» модификатора; дополнительной обработкой фазы;
-эффективность хроматографической колонки, а также такие хроматографические параметры, как время удерживания, коэффициент симметрии пика, число теоретических тарелок и высота теоретической тарелки, а, следовательно, и воспроизводимость результатов анализов, определяются свойствами используемых сорбентов;
-оптимальный выбор хроматографической колонки зависит от химической природы разделяемых веществ и условий хроматографирования.
Решения разнообразных аналитических задач в ВЭЖХ основывается на знании строения сорбентов, их свойств, области их применения и путей оптимизации методик анализа.
Необходимость оптимизации методик возникает при проведении большого количества серийных анализов, например, в лабораториях по контролю качества лекарственных препаратов. Оптимизированная методика разделения позволяет сократить время каждого анализа, а значит сократить расход растворителей и повысить общую производительность жидкостного хроматографа в течение рабочего дня. При этом на хроматограмме должны быть хорошо разрешены не только пики анализируемых веществ, но и пики возможных примесей в них. Для оптимизации методик разделения важнейшим фактором является правильный подбор сорбента.
В экспериментальной части работы опытным путем проведен подбор хроматографической колонки на основе химически модифицированного силикагеля с оптимальными адсорбционными свойствами для количественного определения лекарственного вещества эналаприла малеата методом ВЭЖХ. В качестве наиболее эффективной колонки была выбрана колонка размером 4,6х250 мм, заполненная силикагелем цианосилильным для хроматографии [19], с размером частиц 5 мкм Zorbax XDB-CN.