Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ
где и - активности катионов с зарядами и в растворе; и 5 src="images/referats/9464/image025.png">- концентрации противоионов в твердой фазе, выражаемые в экв на 1 кг или в, мг-экв на 1 г сухого ионита.
1.2 Кинетика ионного обмена
Стадия, определяющая скорость ионного обмена.
Процесс обмена противоионов включает в себя 5 последовательных стадий:
1. перемещение вытесняющего иона через пленку, окружающую зерно, к его поверхности (пленочная, внешнедиффузионная кинетика);
2. перемещение вытесняющего иона внутри зерна к фиксированным ионам, т. е. к точке обмена (гелевая, внутридиффузионная кинетика);
3. химическую реакцию двойного обмена (химическая кинетика);
4. перемещение вытесняемого иона внутри зерна от точки обмена к поверхности;
5. перемещение вытесняемого иона через пленку, окружающую зерно [3].
Суммарная скорость многостадийного процесса определяется скоростью наиболее медленной стадии. Выявление этой стадии и является первым этапом изучения кинетики ионного обмена [1].
Уравнения, описывающие кинетику ионного обмена.
Проблема распознавания лимитирующей стадии решается на основе фундаментального кинетического анализа ионообменных процессов. Кинетические уравнения имеют сравнительно простой вид, если изменениями состава ионита в результате ионного обмена можно пренебречь.
По результатам анализа рассчитывают степень достижения равновесия :
(7),
где - сорбция ионов из раствора за время t; - равновесная сорбция.
Если лимитирующей стадией является сам акт обмена ионов, то
(8),
Величину вычисляют по уравнению
(9),
где и — соответственно константы скорости прямой и обратной реакций, и — концентрации обменивающихся ионов А+ и В+ в растворе [2].
Вывод уравнения для кинетики ионного обмена, лимитирующегося внешней диффузией, был выполнен на основе предположения о постоянстве концентрации раствора и коэффициента распределения адсорбирующегося иона А+ между фазами:
(10),
Константа скорости диффузии R определяется соотношением
(11),
где — коэффициент диффузии через пленку толщиной , покрывающую зерно ионита радиусом , — коэффициент распределения, т. е. отношение концентрации сорбирующегося иона А+ в ионите к концентрации того же иона в растворе в условиях равновесия.
Вывод кинетического уравнения ионообменного процесса, скорость которого лимитируется гелевой диффузией, был сделан для частицы имеющей точно шарообразную форму:
F=1-(6/p2)å(1/n2)exp(-Btn2) (12),
где B=p2/r20 и называется константой скорости гелевой диффузии.
Проверка применимости уравнения (12) сводится к построению графика зависимости Bt от t, который должен быть прямолинейным, если процесс лимитируется гелевой диффузией. Значения Bt удобно определять по экспериментально найденным величинам F с помощью специальной таблицы (Приложение 1). По величине Вτ и известному радиусу зерен смолы можно посчитать среднее значение коэффициента диффузии [4].
Методы распознавания плёночной и гелевой диффузии.
Для выяснения механизма кинетики целесообразно работать с проточным раствором[1]. Количественное рассмотрение ионного обмена приводит к следующим зависимостям: ln(l –F) = -kt для пленочной кинетики и F=k(t)½ для гелевой кинетики при малых значениях τ (F< 0,05), где k константа. Следовательно, при пленочной кинетике должна получиться прямолинейная зависимость ln(l –F) от t; при гелевой кинетике зависимость F от t½ должна выражаться кривой, которая при малых значениях t имеет прямолинейный ход, а затем искривляется. Построение графических зависимостей на основании экспериментально полученных значений F и t позволяет, таким образом, отличить гелевую кинетику от пленочной. Наличие гелевой кинетики можно также проверить в широкой области, вычислив для каждой пары значений F и t коэффициент взаимодиффузии Di. При этом при всех значениях F и t должно получиться одно и то же значение D. Рассмотренные критерии строго применимы только к изотопному обмену. Сколько-нибудь надежные заключения могут быть получены лишь в том случае, если найденные пары значений согласуются с одним механизмом и не согласуются с другим. Механизм кинетики может быть установлен также на основании данных о зависимости скорости обмена от размера частиц, количества поперечных связей, концентрации раствора и скорости перемешивания, или, соответственно, скорости потока [5].
1.3 Преимущества волокнистых хелатообразующих сорбентов
Волокнистые сорбенты имеют ряд особенностей, связанных с их структурой. Основное преимущество – их высокая удельная поверхность, которая примерно на два порядка выше, чем у гранулированных ионообменников гелевой структуры и в 5-6 раз выше, чем у сорбентов на основе сополимеров пористой структуры[6]. Диаметр частиц волокнистых сорбентов на 1-2 порядка меньше среднего размера частиц гранульных сорбентов[7].
Основными характеристиками хелатообразующих сорбентов, в том числе и волокнистых, являются сорбционная ёмкость, кислотно-основные и комплексообразующие свойства, кинетические параметры. Важны так же химическая устойчивость, набухаемость и возможность многократного использования[8].
· Кислотно-основные свойства. Хелатообразующие волокнистые сорбенты, как правило, содержат несколько различных функциональных групп. Это может быть обусловлено неполным превращением реакционно-способных групп промежуточных продуктов при синтезе, гидролизом групп, входящих в состав полимерной матрицы, наличием активных групп в исходном полимере.
Другие рефераты на тему «Химия»:
- Графический метод решения химических задач
- Диазо и азосоединения. Гидразосоединения. Диазоалканы
- Синтез м-нитробензальдегида
- Влияние дисперсности алюминия и каталитических добавок на характеристики горения систем на основе активного горючего-связующего
- Карбоновые кислоты - свойства, получение и производные