Методы определения хлорид-ионов

В качестве стандартных растворов для определения галогенидов, цианидов и роданидов применяют нитрат или перхлорат ртути(II), а для определения ионов хорошо диссоциирующих солей ртути – роданид аммония.

В меркуриметрии в качестве индикаторов применяют нитропруссид натрия, дающий бесцветный осадок с Hg2+, дифенилкарбазон, образующий синий осадок, р-нитрозо-нафтол, внутрикомплексное соединение

которого с Hg2+ красного цвета. И.С. Мустафин и О.В. Сиванова в 1964 г. предложили для этой же цели применять нитрозооксин в смеси с красителем кислотным синим антрахиноновым; последний прибавляется в качестве светофильтра. Такой индикаторный раствор, названный авторами гидрон III, при избытке галогенидов окрашен в зеленый цвет, переходящий в красный при избытке Hg2+. Индикатор позволяет работать с 2,5*10-3 н. раствором Hg2+ и определять, например, 0,03 мг хлоридов в 10 мл титруемого раствора.

Меркуриметрический метод широко применяется благодаря многим преимуществам по сравнению с аргентометрическими методами.

1. Меркуриметрический метод позволяет вести прямое определение анионов в кислой среде.

2. Этот метод применяется не только для определения галогенидов, цианидов и роданидов, но и для определения ионов окисной ртути.

3. Многие ионы, мешающие определению по методу Мора и Фольгарда, не оказывают влияния на точность определений с помощью нитрата или перхлората окисной ртути.

4. Соединения ртути являются менее дефицитными, чем соли серебра, и легко регенерируются.

Меркуриметрическое определение хлоридов выполняется методом прямого титрования анализируемого раствора раствором нитрата ртути (ІІ) в присутствии индикатора нитропруссида натрия или дифенилкарбазона. Титрование ведётся до появления сине-фиолетового окрашивания.

Меркуриметрический метод, равно как и другие методы, основанные на применении солей ртути, имеет весьма существенный недостаток: соли ртути ядовиты, работа с ними требует большой аккуратности и применения необходимых мер предосторожности.

2.2.5 Меркурометрия

Меркурометрический метод титриметрического анализа основан на применении титрованных растворов солей ртути(I) (меркуро-ионов).

При взаимодействии [Hg2]2+-ионов с хлоридами, бромидами, иодидами и т.д. образуются осадки малорастворимых галогенидов Hg2Cl2, Hg2Br2, Hg2I2, например:

[Hg2]2+ + 2Сl- → Hg2Cl2

Меркурометрический метод по сравнению с аргентометрическим дает некоторые преимущества.

1. При меркурометрическом методе не требуется ценных препаратов серебра.

2. Соли ртути (I) менее'растворимы, чем соответствующие соли серебра, и поэтому при титровании хлоридов нитратом ртути(I) наблюдается резкий скачок титрования вблизи точки эквивалентности.

3. Определение меркурометрическим методом можно проводить

в кислых растворах методом прямого титрования.

Недостатком меркурометрического метода является ядовитость солей ртути. Поэтому при работе с этими солями следует соблюдать большую осторожность.

Применение меркурометрического метода при количественных определениях растворимых хлоридов и бромидов пока ограничено.

В меркурометрическом методе титрования в качестве индикаторов применяют:

Дифенилкарбазон, образующий с [Нg2]2+-ионами осадок синего цвета.

Роданид железа Fe(SCN)3. При титровании (например, хлоридов) растворами солей ртути(I) в точке эквивалентности раствор обесцвечивается. Избыток [Hg2]2+-ионов реагирует с Fe(SCN)3 по уравнению:

3 [Hg2]2+ + 2 Fe(SCN)3 → 3Hg2(SCN)2 + 2Fe3+

2.3 Инструментальные методы определения хлорид-ионов

2.3.1 Нефелометрическое определение хлоридов

При прохождении пучка света через дисперсные системы наблюдается рассеяние или поглощение света твердыми частицами. Это явление положено в основу нефелометрии и турбидиметрии.

Интенсивность светового потока, рассеиваемого небольшими твердыми частицами взвеси, описывается уравнением Рэлея:

()

где I и I0 – интенсивности рассеянного и падающего света соответственно;

F – функция, зависящая от показателя преломления частиц в растворе;

N – общее число частиц во взвеси;

V – объем частицы;

λ – длина волны падающего света;

г – расстояние до наблюдателя;

β – угол между направлениями падающего и рассеянного света.

При нефелометрических определениях все измерения проводят при определенных значениях F, V, г, р. Поэтому, объединяя их в одну константу, можно записать:

I = I0KN = I0KC ()

Отсюда интенсивность рассеянного светового потока прямо пропорциональна числу частиц во взвесях, т.е. концентрации частиц, находящихся в растворе. Из приведенной выше формулы следует, что интенсивности рассеянного света в двух растворах с частицами одинаковой формы и размеров относятся между собой, как концентрации частиц определяемого вещества:

Это уравнение лежит в основе нефелометрических определений. При нефелометрических определениях измеряют интенсивность рассеянного света в направлении, перпендикулярном к направлению первичного пучка света. Турбидиметрические измерения производятся в направлении распространения светового потока.

Приведенные уравнения справедливы только для очень разбавленных суспензий (не более 100 мг на 1 л). Турбидиметрические и нефелометрические методы обладают высокой чувствительностью. Однако применяются они не широко, что объясняется трудностью получения взвесей с одинаковыми размерами частиц. Количественные нефелометрические и турбидиметрические определения проводят, пользуясь калибровочной кривой.

Для проведения измерений используют прибор – нефелометр. Оптическая схема нефелометра НФМ изображена на рис. 2.2.

Рисунок 2.2 – Оптическая схема нефелометра НФМ.

Свет от лампы накаливания 1 проходит через стеклянную пластинку 2, конденсор 3 и попадает в кювету 4, помещенную в камеру с дистиллированной водой. Камеру с водой применяют для того, чтобы уменьшить рассеивание света стенками кюветы. Световой поток, прошедший через кювету, гасится в светоловушке 5, а части светового потока, рассеянного частицами взвеси в кювете 4 и стеклянным рассеивателем 17, собираются насадочными линзами 6 и 16. Образовавшиеся два пучка проходят через диафрагмы 7 и 15, связанные с отсчетными барабанами и объективами 8 и 14, направляются в ромбические призмы 9 и 13. Бипризма 10 лает возможность наблюдать в поле зрения окуляра 12 интенсивность двух пучков света.

При нефелометрических определениях на пути пучков света вводят светофильтры 11, применение которых нивелирует разницу в оттенках двух световых потоков.

Нефелометрическое определение хлорид-ионов основано на реакции осаждения хлоридов нитратом серебра:

Ag+ + Cl- → AgCl

При малых концентрациях хлорид-ионов выпадение осадка не происходит, а возникает помутнение раствора. Степень помутнения зависит от концентрации хлоридов в растворе. Для стабилизации растворов вводят стабилизирующие компоненты.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы