Скорость химической реакции
Берем тиосульфат натрия и три кислоты (серную, соляную и ортофосфорную):
Na2S2O3 + H2SO4 = Na2SO4 + SO2 + S + H2O
Na2S2O3 + 2 HCl = 2 NaCl + SO2 + S + H2O
3 Na2S2O3 +2 H3РO4 = 2 Na3РO4 + 3 SO2 + 3 S + 3 H2O
Наливаем в три пробирки по 8 мл раствора тиосульфата натрия. В первую пробирку с раствором тиосульфата натрия наливаем 8 мл серной кислоты, быстро перемешиваем и засекаем вре
мя в секундах от начала реакции до помутнения раствора. Чтобы лучшее заметить окончание реакции, с противоположной стороны стенки пробирки приклеиваем полоску черной бумаги. Отчет времени заканчиваем в момент, когда эта полоска не будет просматриваться сквозь помутневший раствор.
Аналогично проводим опыты с другими кислотами. Результаты заносим в таблицу (приложение 1, таблица 1). Скорость реакции определяем как величину, обратно пропорциональную времени: υ = 1/ t. На основании таблицы строим график зависимости скорости реакции от природы реагирующих веществ (приложение 2, график 1).
Вывод: таким образом, природа кислот оказывает влияние на скорость химической реакции. А, так как сила кислот определяется концентрацией ионов водорода, то скорость реакции зависит и от концентрации реагирующих веществ.
Б. Рассмотрим реакцию взаимодействия различных металллов с соляной кислотой. Скорость реакции будем определять по объему выделившегося водорода, который собираем методом вытеснения воды (приложение 3, рисунок 1).
В четыре пробирки поместим по 0, 05 г. металлов: магния, цинка, железа и меди. Поочередно в каждую пробирку (а) наливаем одинаковые объемы соляной кислоты (1:2). Водород, который будет быстро веделяться, поступит в пробирку (б). Отмечаем время, за которое пробирка заполняется водородом. На основании результатов (приложение 4, таблица 2) строим график зависимости от природы реагирующих веществ (приложение 4, график 2).
Вывод: не все металлы могут взаимодействовать с кислотами путем выведения водорода. Металлы, вытесняющие водород из растворов кислот, расположены в ряду Н.Н. Бекетова до водорода, а металлы, которые водород не вытесняют – после водорода (в нашем случае это медь). Но и первая группа металлов различаются по степени активности: магний-цинк-железо, поэтому и интенсивность выделения водорода различна.
Таким образом, скорость химической реакции зависит от природы реагирующих веществ.
2. Зависимость скорости химической реакции от концентрации взаимодействующих веществ.
Цель. Установить графическую зависимость влияния концентрации на скорость реакции.
Для проведения опыта используем те же растворы тиосульфата натрия и серной кислоты, которыми пользовались в первом опыте (А).
В пронумерованные пробирки наливаем указанные количества миллилитров раствора тиосульфата натрия и воды. Вливаем в первую пробирку 8 мл раствора серной кислоты, быстро перемешиваем и замечаем время от начала реакции до помутнения раствора (смотри опыт 1 А). Проводим аналогичные опыты с остальными пробирками. Результаты заносим в таблицу (приложение 6, таблица 3), на основании которых строим график зависимости скорости химической реакции от концентрации реагирующих веществ (приложение 7, график 3). Аналогичный результат мы получили, оставляя постоянной концентрацию тиосульфата натрия, но меняя концентрацию серной кислоты.
Вывод: таким образом, скорость химической реакции зависимт от концентрации реакнгирующих веществ: чем выше концентрация, тем скорость реакции больше.
3. Зависимость скорости химической реакции от температуры.
Цель: проверить, зависит ли скорость химической реакции от температуры.
Опыт проводим с растворами тиосульфата натрия и серной кислоты (смотри опыт 1)[1], дополнительно готовим химический стакан, термометр.
В четыре пробирки наливаем 8 мл раствора тиосульфата натрия, в 4 другие – 8 мл раствора серной кислоты. Все пробирки помещаем в стакан с водой и измеряем температуру воды. Через 5 минут вынимаем две пробирки с растворами тиосульфата натрия и серной кислоты, сливаем их, перемешиваем и замечаем время до помутнения раствора. Стакан с водой и пробирками нагреваем на 10оС и повторяем опыт со следующими двумя пробирками. Проводим такие же опыты с остальными пробирками, повышая каждый раз температуру воды на 10оС. Полученные результаты записываем в таблицу (приложение 8, таблица 4) и строим график зависимости скорости реакции от температуры (приложение 9, график 4).
Вывод: данный эксперимент позволил сделать вывод, что скорость химической реакции увеличивается с повышением температуры на каждые 10оС в 2–4 раза, т.е. доказал справедливость закона Вант-Гоффа.
4. Влияние катализатора на скорость химической реакции.
Цель: проверить, зависит ли скорость химической реакции от катализатора, и обладают ли катализаторы специфичностью.
А. Для проверки специфичности катализатора мы использовали реакцию разложения перекиси водорода: 2Н2О2 = 2Н2О + Н2. Брали 3% раствор, разложение перекиси водорода идет очень слабо, даже опущенная в пробирку тлеющая лучинка не разгорается. В качестве катализаторов мы брали диоксид кремния SiO2, диоксид марганца MnO2, перманганат калия KМnO4, хлорид натрия NaCl. Только при добавлении порошка оксида марганца (IV) произошло бурное выделение кислорода, тлеющая лучинка, опущенная в пробирку, ярко разгорелась.
Таким образом, катализаторы – это вещества, которые ускоряют химическую реакцию, и, чаще всего, для конкретной реакции необходим «свой» катализатор.
5. Кинетика каталитического разложения перекиси водорода[2].
Цель: выяснить зависимость скорости реакции от концентрации веществ, температуры и катализатора.
Разложение очень слабого раствора пероксида водорода начинается под влиянием катализатора. С течением реакции концентрация перекиси водорода уменьшается, о чем можно судить по количеству выделяющегося кислорода в единицу времени. Опыт проводим в приборе (приложение 10, рисунок 2): в пробирку помещаем 0,1 г порошка двуокиси марганца, присоединяем ее к резиновой трубке, в колбу наливаем 40 мл 3-процентного раствора перекиси водорода, соединяем с помощью резиновой трубки с пробиркой. Заполняем цилиндр (бюретку) водой, опускаем в кристаллизатор, закрепляем в зажиме штатива вертикально, подводим под него газоотводную трубку от колбы Вюрца. Без катализатора выделение кислорода не наблюдаем. После добавления двуокиси марганца каждую минуту в течение 10 минут отмечаем и записываем в таблицу объем выделившегося кислорода (приложение 11, таблица 5). На основании данных строим график зависимости объемов выделившегося кислорода от времени (приложение 12, график 5)
6. Влияние поверхности соприкосновения реагирующих веществ на скорость химической реакции.
Цель. Выяснить, влияет ли поверхность соприкосновения реагирующих веществ на скорость гетерогенной химической реакции.
На весах взвесили одинаковое количество (0,5 г) мела (СаСО3) в виде кусочка и порошка, поместили навески в две пробирки, в которые налили одинаковое количество соляной кислоты (1:2). Наблюдаем выделение углекислого газа, при чем в первой пробирке (мел в виде кусочка) реакция идет менее энергично, чем во второй (мел в виде порошка) (приложение 13, фотографии 1,2): СаСО3 + 2 HCl = CaCl2 + CO2 + H2O