Концепции современного естествознания
Наиболее фундаментальным из них является понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией или информацией. Поскольку между веществом и энергией существует взаимосвязь, постольку можно сказать, что система в ходе своей эволюции производит энтропию, которая, однако, не накапливается в ней, а рассеивается в окружающей среде. Вместо нее из среды поступ
ает свежая энергия и именно вследствие такого непрерывного обмена энтропия системы может не возрастать, а оставаться неизменной или даже уменьшаться. Из этого следует, что открытая система не может быть равновесной, ее функционирование требует непрерывного поступления энергии и вещества из внешней среды, вследствие чего неравновесие в системе усиливается. В результате прежняя взаимосвязь между элементами системы (прежняя структура) разрушается. Между элементами системы возникают новые когерентные (согласованные) отношения, которые приводят к кооперативным процессам и к коллективному поведению ее элементов.
Материальные структуры, способные рассеивать энергию, называются диссипативными. Примером может служить самоорганизация, которая возникает в химических реакциях. Она связана с поступлением извне новых реагентов, то есть веществ, обеспечивающих продолжение реакции и выведение в окружающую среду продуктов реакции. Внешне самоорганизация проявляется здесь в появлении в жидкой среде концентрических волн или в периодическом изменении цвета раствора, например, с синего на красный и обратно («химические часы»). Эти реакции впервые были исследованы отечественными учеными В. Белоусовым и А. Жаботинским. На их экспериментальной основе группой бельгийских ученых во главе с И. Пригожиным была построена теоретическая модель, названная брюсселятором (от названия города Брюссель). Эта модель легла в основу исследований новой термодинамики, которую назвали неравновесной, или нелинейной. Отличительная черта моделей, описывающих открытые системы и процессы самоорганизации, состоит в том, что в них используются нелинейные математические уравнения.
Изучая процессы самоорганизации, происходящие в лазере, немецкий физик Герман Хакен назвал новое направление исследований синергетикой, что в переводе с древнегреческого означает совместное, согласованное действие. Синергетика объясняет процесс самоорганизации следующим образом:
1. Открытая система должна находиться достаточно далеко от точки термодинамического равновесия. Если система находится в точке равновесия, то она обладает максимальной энтропией и поэтому неспособна к какой-либо организации. В этом состоянии она достигает максимума дезорганизации. Если же система находится вблизи от точки равновесия, то со временем она приблизится к ней и, в конце концов, придет в состояние полной дезорганизации.
2. Если упорядочивающим принципом для закрытых систем является эволюция в сторону увеличения их энтропии, т.е. беспорядка, то фундаментальным принципом самоорганизации является возникновение и усиление порядка через флуктуации. Такие флуктуации (случайные отклонения системы от некоторого среднего положения) в самом начале функционирования системы подавляются и ликвидируются ею. Однако в открытых системах благодаря усилению неравновесности эти отклонения со временем возрастают и, в конце концов, приводят к «развалу» прежнего порядка и возникновению нового порядка. Этот принцип обычно называют как принцип образования порядка через флуктуации. Поскольку флуктуации носят случайный характер, а именно с них начинается возникновение нового порядка и структуры, постольку появление нового в мире всегда связано с действием случайных факторов.
4. В отличие от принципа отрицательной обратной связи, на котором основывается управление и сохранение динамического равновесия систем, возникновение самоорганизации опирается на принцип положительной обратной связи. Согласно этому принципу изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что приводит в результате к возникновению нового порядка и структуры.
5. Процессы самоорганизации сопровождаются нарушением симметрии, свойственной для закрытых равновесных систем. Для открытых систем характерна асимметрия.
6. Самоорганизация возможна лишь в системах, имеющих достаточное количество взаимодействующих между собой элементов. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления кооперативного (коллективного, согласованного) поведения элементов системы и возникновения процесса самоорганизации.
Это – необходимые, но не достаточные условия для возникновения самоорганизации в системе. Чем выше уровень организации системы, чем выше она находится на эволюционной лестнице, тем более сложными и многочисленными оказываются факторы, которые приводят к самоорганизации.
Новое понимание хаоса нашло свое выражение в знаменитом «эффекте бабочки», сформулированном Эдвардом Лоренцем, ученым-метеорологом. «Эффект бабочки» гласит: Движение крыла бабочки в Перу через серию непредсказуемых и взаимосвязанных событий может усилить движение воздуха и, в итоге, привести к урагану в Техасе.
Об этом же говорил еще в начале XX века знаменитый математик Анри Пуанкаре. Он пришел к выводу, что совершенно ничтожная величина, в силу этого ускользающая от нашего внимания, вызывает значительное действие, которое мы не могли и предусмотреть.
Казалось бы, все говорит о торжестве случая над предопределенностью. Однако то, что мы называем «случайностью» представляет собой некий порядок, выдающий себя за случайность, порядок, законов которого наука пока не может объяснить. Появился новый термин – аттрактор, который помогает понять происходящие процессы.
И. Пригожин, лауреат Нобелевской премии, в книге «Время, хаос, квант» пишет: «При исследовании того, как простое относится к сложному, мы выбираем в качестве путеводной нити понятие «аттрактора», то есть конечного состояния или хода эволюции диссипативной системы… Понятие аттрактора связано с разнообразием диссипативных систем… Идеальный маятник (без трения) не имеет аттрактора и колеблется бесконечно. С другой стороны, движение реального маятника – диссипативной системы, движение которой включает трение, - постепенно останавливается в состоянии равновесия. Это положение является аттрактором… В отсутствии трения аттрактор не существует, но даже самое слабое трение радикально изменяет движение маятника и вводит аттрактор». Для большей наглядности Пригожин облекает идею в геометрическую форму. Тогда конечная точка движения маятника – аттрактор – представляет собой финальное состояние любой траектории в пространстве.
Однако не все диссипативные системы эволюционируют к одной- единственной конечной точке, как в случае с реальным маятником. Есть системы, которые эволюционируют не к какому-нибудь состоянию, а к устойчивому периодическому режиму. В этом случае аттрактор не точка, а линия, описывающая периодические во времени изменения системы. Были построены изображения аттракторов, которые представляют собой не точку или линию, а поверхность или объем. Полной неожиданностью стало открытие так называемых странных аттракторов. В отличие от линии или поверхности, странные аттракторы характеризуются не целыми, а дробными размерностями.
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики