Концепции современного естествознания

Наиболее четкую классификацию аттракторов дал американский ученый Билл М. Вильямс, который около сорока лет проводил исследования хаотических процессов рынка. В его исследовании соединились достижения физики, математики и психологии. Он утверждает, что всеми внешними явлениями управляют четыре силы, извлекающие порядок из беспорядка, получившие название аттракторов:

· Точечный аттрактор; <

p>· Циклический (круговой) аттрактор;

· аттрактор Торас;

· Странный аттрактор.

Точечный аттрактор – аттрактор первой размерности – это простейший способ привнести порядок в хаос. Он живет в первом измерении линии, которая составлена из бесконечного числа точек. Он характеризуется как некая устремленность. Так, в человеческом поведении Точечный аттрактор создает психологическую фиксацию на одном желании (или нежелании), и все остальное откладывается до тех пор, пока не будет удовлетворено (уничтожено) это желание.

Циклический аттрактор живет во втором измерении плоскости, которая состоит из бесконечного числа линий. Им характеризуется рынок, заключенный в коридор, где цена движется вверх и вниз в определенном диапазоне в течение некоторого промежутка времени. Этот аттрактор более сложен и является структурой для более сложного поведения.

Аттрактор Торас – еще более сложный аттрактор. Он начинает сложную циркуляцию, которая повторяет себя по мере движения вперед. По сравнению с двумя предыдущими аттрактор Торас вводит большую степень беспорядочности, и его модели более сложны. Графически он выглядит как кольцо или рогалик, он образует, спиралевидные круги на ряде различных плоскостей и иногда возвращается к себе, завершая полный оборот. Его основная черта – это повторяющееся действие.

Странный аттрактор из четвертого измерения. То, что поверхностный взгляд воспринимает как абсолютный хаос, в котором не заметно никакого порядка, имеет определенный порядок, базирующийся на Странном аттракторе. Его можно увидеть, только если наблюдение ведется из четвертого измерения. Его можно представить как множество пульсирующих линий в трехмерном пространстве, подобных вибрирующим струнам. Четырехмерность Странного аттрактора получается за счет добавления пульсаций (вибраций). Важнейшей характеристикой Странного аттрактора является чувствительность к начальным условиям («Эффект бабочки»). Малейшее отклонение от начальных условий может привести к огромным различиям в результате.

Вильямс утверждает, что, когда мы находимся под действием первых трех аттракторов, нами манипулируют, и мы становимся предсказуемыми. Только в динамике Странного аттрактора мы можем быть действительно свободными. Странный аттрактор организует прекрасный мир спонтанности и свободы.

Для описания сложных систем была создана новая геометрия. В 1975 г. Бенуа Мандельброт ввел понятие фрактал (от лат. – расколотый) для обозначения нерегулярных, но самоподобных структур. Возникновение фрактальной геометрии связано с выходом в 1977 г. книги Мандельброта «Фрактальная геометрия природы». Он писал: «Фракталом называется структура, состоящая из частей, которые в чем-то подобны целому».

Фрактальная геометрия «увидела» парадоксы, поставившие в тупик многих математиков XX века. Это и парадокс «береговой линии», парадокс «снежинка» и др.

Что это за необыкновенная «снежинка»? Представим себе равносторонний треугольник. Мысленно разделим каждую его сторону на три равные части. Уберем среднюю часть на каждой стороне и вместо нее приставим равносторонний треугольник, длина стороны которого составляет одну треть от длины исходной фигуры. Получим шестиконечную звезду. Она образована уже не тремя отрезками определенной длины, а двенадцатью отрезками длиной в три раза меньше исходной. И вершин у нее уже не три, а шесть. Повторим эту операцию вновь и вновь, число деталей в образуемом контуре будет расти и расти. Изображение приобретает вид снежинки. Связная линия, составленная из прямых (или криволинейных) участков и названная кривой Коха, обладает целым рядом особенностей. Прежде всего, она представляет собой непрерывную петлю, никогда не пересекающую саму себя, так как новые треугольники на каждой стороне достаточно малы и поэтому не сталкиваются друг с другом. Каждое преобразование добавляет немного пространства внутри кривой, однако ее общая площадь остается ограниченной и фактически лишь незначительно превышает площадь первоначального треугольника. И, кроме того, кривая никогда не выйдет за пределы окружности, описанной около него. Кривая Коха бесконечной длины теснится в ограниченном пространстве! При этом она представляет собой уже нечто большее, чем просто линия, но все же это еще не плоскость.

Итак, фракталы – это геометрические фигуры с набором очень интересных особенностей: дробление на части, подобные целому, или одно и то же преобразование, повторяющееся при уменьшающемся масштабе. Им присущи изломанность и самоподобие. Фрактальность – это мера неправильности. Например, чем больше изгибов и поворотов имеет речка, тем больше ее фрактальное число. Фракталы могут быть линейными и нелинейными. Линейные фракталы определяются линейными функциями, т.е. уравнениями первого порядка. Они проявляют самоподобие в самом бесхитростном виде: любая часть есть уменьшенная копия целого. Более разнообразным является самоподобие нелинейных фракталов: в них часть есть не точная, а деформированная копия целого. Фракталы описывают весь реальный мир.

Исходя из идеи размерности, Мандельброт пришел к выводу, что ответ на вопрос: сколько измерений имеет тот или иной объект, зависит от уровня восприятия. Например, сколько измерений имеет клубок бечевки? С огромного расстояния он выглядит точкой, имеющей нулевую размерность. Приблизимся к клубку и обнаружим, что это сфера, и у нее три измерения. На еще более близком расстоянии становится различимой сама бечевка, а объект приобретает одно измерение, но скручен таким образом, что задействуется трехмерное пространство. Под микроскопом обнаружим, что бечевка состоит из скрученных протяженных трехмерных объектов, а те, в свою очередь, из одномерных волокон, вещество которых распадается на частицы с нулевой размерностью. То есть в зависимости от нашего восприятия размерность менялась так: нулевая – трехмерная – одномерная – трехмерная – одномерная – нулевая.

Физические системы с фрактальной структурой обладают уникальными свойствами. Фракталы иначе рассеивают электромагнитное излучение, по - другому колеблются и звучат, иначе проводят электричество т.д.

Как ни парадоксально, открытие фрактальных множеств не только установило существование непрогнозируемых процессов, но и научило человека ими управлять, поскольку неустойчивость хаотических систем делает их чрезвычайно чувствительными к внешнему воздействию. При этом системы с хаосом демонстрируют удивительную пластичность. Дерево растет и ветвится вверх, но как точно изогнутся его ветви, никто не скажет. Вот почему говорится, что мир создан из хаоса.

Основные понятия темы:

Самоорганизация - процесс самопроизвольного формирования структуры более сложной, чем первоначальная.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
 61  62  63  64  65  66  67  68  69  70  71  72 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы