Концепции современного естествознания
Ионной называют химическую связь между ионами – заряженными частицами, в которые превращаются атомы в результате отдачи или присоединения электронов. Вещества, образованные из ионов, называются ионными соединениями.
Металлическая связь проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов.
Водородная связ
ь обусловлена дополнительным взаимодействием между ковалентно связанным атомам водорода одной молекулы и электроотрицательным атомом той же самой или другой молекулы.
Учение о химических связях составляют основу современной теории химического строения. Согласно ей, химическое строение – это не только порядок элементарной связи атомов и их взаимное влияние в веществе, но и направление, и прочность связей, межатомные расстояния, распределение плотности электронного облака, эффективные заряды атомов и т.п.
В XX веке химия все более становилась наукой уже не только и не столько о веществах как законченных предметах, сколько наукой о процессах и механизмах изменения веществ. Химические процессы представляют собой сложнейшие явления, как в неживой, так и в живой природе. Они протекают в форме взаимодействия двух или нескольких веществ, приводящего к образованию новых веществ. Склонность вещества вступать в те или иные химические взаимодействия называется его реакционной способностью, о которой судят по числу и разнообразию характерных для данного вещества превращений. Суть этой способности можно понять с точки зрения активности химических элементов. Наиболее активными являются неметаллы с минимальной атомной массой и имеющие во внешней оболочке 6 или 7 электронов. В качестве примера можно привести кислород: ведь в нем горит даже железо. Что касается металлов, то наиболее активными из них являются элементы, принадлежащие I и II группам таблицы Менделеева, имеющие на внешнем уровне соответственно 1 и 2 валентных электрона и большую атомную массу. Например, барий легко разлагает воду даже при комнатной температуре, а соприкосновение цезия с водой очень часто приводит к взрыву. В то же время элементы с полностью укомплектованной оболочкой являются неактивными (например, инертные газы: неон, аргон, криптон, ксенон).
Описание и объяснение химических процессов – задача одного из важнейших разделов химии, называемого химической кинетикой. Обычно эту общую задачу подразделяют на две более конкретные:
1. Выявление механизма реакции – установление элементарных стадий процесса и последовательности их протекания (качественные изменения);
2. Количественное описание химической реакции – установление строгих соотношений, которые бы удовлетворительно предсказывали изменение количества исходных реагентов и продуктов по мере протекания реакции.
Для понимания основных закономерностей осуществления химического процесса необходимо изучение механизма его протекания. Исходные вещества, вступающие в химическую реакцию, чрезвычайно редко непосредственно превращаются в ее продукты. В большинстве случаев реакция проходит ряд последовательных и параллельных стадий, на которых образуются и расходуются промежуточные вещества. Число промежуточных стадий может быть очень велико – в цепных реакциях их десятки и сотни тысяч. Время существования промежуточных веществ весьма разнообразно: одни вполне стабильны, другие существуют в равновесном состоянии несколько секунд.
Накопление информации о механизме отдельных химических реакций позволит проводить их классификацию, и будет способствовать в дальнейшем созданию общей теории осуществления того или иного типа химической реакции. С другой стороны, выявление механизма конкретной химической реакции позволяет решать важную практическую задачу – выделение наиболее медленной элементарной стадии, которую принято называть лимитирующей, т.е. определяющей скорость всего химического процесса в целом.
Рассматривая механизм химических реакций, следует, прежде всего, иметь в виду, что характер взаимодействия существенно зависит от агрегатного состояния реагентов и продуктов. Реагенты и продукты, вместе взятые, образуют так называемую физико-химическую систему.
Совокупность однородных частей системы, обладающих одинаковым химическим составом и свойствами и отделенных от остальных частей системы поверхностью раздела, называют фазой. Системы, состоящие из одной фазы, называют гомогенными, а системы, содержащие несколько фаз – гетерогенными.
Определение механизма химической реакции является специальной задачей химической кинетики, которую решают, используя современные физико-химические методы исследования.
4. Реакционная способность веществ
Основным понятием в химической кинетике является понятие скорости реакции. В природе и в промышленности протекает огромное количество химических процессов. Одни протекают веками, другие очень быстро.
Скорость химической реакции определяется изменением концентрация реагирующих веществ в единицу времени. Она зависит от многих факторов и включает природу реагентов, концентрацию реагирующих веществ и температуру, наличие катализаторов, состояние кристаллической решетки твердых реагентов и продуктов, если такие имеются в системе.
Быстрее протекает та реакция, в которой взаимодействует меньше ионов. Скорость реакции увеличивается также в случае увеличения числа частиц реагирующих веществ, приводящего к более частым их столкновениям. Влияние концентрации реагентов на скорость химического взаимодействия выражается основным законом химической кинетики – законом действующих масс. Этот закон распространяется на газовые смеси и растворы, но он не применим к реакциям твердых веществ.
Для реакций с участием твердых веществ скорость взаимодействия очень чувствительна к степени смешения реагентов и состоянию их кристаллической решетки, так как любые нарушения в этой решетке вызывают увеличение реакционной способности твердых тел.
Многочисленные опыты показывают, что при повышении температуры в арифметической прогрессии скорость большинства химических реакций возрастает в геометрической прогрессии. С первого взгляда может показаться, что высокая температурная чувствительность скорости реакции связана с увеличением числа молекулярных столкновений. Однако это не так. Согласно расчетам, общее число столкновений молекул при повышении температуры на десять градусов возрастает только на 1,6 %, а число прореагировавших молекул возрастает на 200 – 400 %.
Чтобы объяснить наблюдаемые расхождения, С. Аррениус предположил, что влияние температуры сводится главным образом к увеличению числа активных молекул, т.е. молекул, столкновение которых приводит к образованию продукта (эффективного столкновения). Согласно С. Аррениусу, доля эффективных столкновений, равная отношению их числа к общему числу столкновений (n), изменяется с температурой.
Одно из наиболее эффективных средств воздействия на скорость протекания химических процессов – использование катализаторов. Напомним, что катализаторы – это вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными как по составу, так и по массе. Иначе говоря, в момент самой реакции катализатор активно участвует в химическом процессе, как и реагенты. Но к концу реакции между ними возникает принципиальное отличие – реагенты изменяют свой химический состав, превращаясь в продукты, а катализатор выделяется в первоначальном виде. Чаще всего роль катализатора заключается в увеличении скорости реакции, хотя некоторые катализаторы не ускоряют, а замедляют химический процесс. Явление ускорения химических реакций благодаря присутствию катализаторов, носит название катализа, а замедление – ингибирования.
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики