Программно-аппаратный комплекс для проведения специальных комплексных проверок электронных устройств
Микросхема 1554 ИД7 представляет собой дешифратор/демультиплексор 3 на 8. Используем микросхему в качестве дешифратора, тогда входы D0, D1, D2 являются информационными, а входы ST1, ST2, ST3 – входы разрешения. На входы подаётся адрес от МК (в виде двоичного кода), который возбуждает один из 8 выходов, при этом входы разрешения должны быть активными. Выбор этой микросхемы основывается именно на
количестве и назначении выводов (8 выходов), так как необходимо управлять подключением восьми цепей внешнего устройства.
3.2.4 В качестве ПЗУ микроконтроллера 1830ВЕ31У целесообразно использовать микросхему памяти матричного типа 1623РТ2А, с возможностью однократного программирования информационной емкостью (8Кх8 бит). Программирование осуществляется электрически посредством пережигания поликремниевых перемычек. Микросхема памяти 1623РТ2А устойчива к воздействиям спец факторов и обладает достаточным объемом памяти. Использование микросхем с электрическим и ультрафиолетовым стиранием нецелесообразно из-за возможности потери информации при прохождении высоковольтных помех по цепям питания и воздействии ярких вспышек света. Потеря информации с микросхем матричного типа возможна только при физическом разрушении самого кристалла.
3.2.5 Микросхема 537 РУ9 используется в качестве ОЗУ микроконтроллера 1830ВЕ31У. Статическая память с байтовой организацией объёмом 2К×8 бит (1К=1024). Относится к серии КМДП-микросхемам статических ОЗУ. Для них характерно сравнительно невысокое быстродействие, высокая помехоустойчивость, малая потребляемая мощность, способность сохранять записанную информацию при напряжении питания 1,5…3В, по входу и выходу совместимы с ТТЛ уровнями. Достоинства таких микросхем: большая емкость, специфика энергопотребления (нет сквозного тока), ток утечки мал. Существуют динамические ОЗУ запоминающая ячейка – конденсатор, который способен разряжаться, что является отрицательным качеством, так как теряется хранящаяся информация.
3.2.6 Кварцевый резонатор, подключаемые к выводам корпусов микроконтроллера 1880ВЕ31У, обеспечивает стабильность частот внутренних генераторов, которые, в свою очередь, формируют сигналы синхронизации. Для подключения к микроконтроллеру 1880ВЕ31У выбран кварцевый резонатор РК386ММ с частотой импульсов 11.059 МГц.
3.2.7 Микросхема 169 АП2 основное функциональное назначение которой – формирования сигналов для линии связи аппаратуры передачи данных. Микросхема преобразовывает уровни логических «1» и «0» в +12 и -12В, и обратно, для обмена на информацией по последовательному каналу связи RS-232.
3.2.8 Микросхемы 1НТ251 - транзисторные сборки, состоящие из четырёх кремниевых n-p-n переключательных высокочастотных маломощных транзисторов. Выбраны в качестве переключающих систем, именно в этом заключается их основное применение.
3.2.9 Микросхема K140УД1701A – прецизионный (высокочастотный) операционный усилитель [2]. Используется для усиления малых электрических сигналов, сопровождаемых высоким уровнем помех. Характеризуется малым значением напряжения смещения и его температурным дрейфом, большими коэффициентами усиления и подавления синфазного сигнала, большим входным сопротивлением и низким уровнем шумов. В ПАК операционные усилители используются в семе измерения напряжения на контактах ключей. Так как наша задача сравнить два значения сигналов поступающих на входы ОУ, то необходимо что бы усиление дифференциального сигнала было намного больше усиления синфазного сигнала и коэффициент ослабления синфазного сигнала (КОСС) был максимальным. Именно этими свойствами обладает данный тип усилителей.
3.2.10 В качестве дискретных ЭРИ были выбраны:
– диод 2Д522Б [5];
– конденсаторы К10- 17 и К10- 47;
– резисторы С2-33Н [7];
– транзистор КТ3107 (кремниевые p-n-p), обладающий необходимыми параметрами для усиления, генерирования и переключения сигналов низкой и высокой частот [4];
– реле РЭС80А – слаботочное низкочастотное электромагнитное реле, основное назначение – коммутация электрических сигналов с частотами до 10 – 1000 КГц при соответствующем уменьшении нагрузки;
– соединители 2РМД и ГРПМ1-45ШУ2-В, отличающиеся достаточной надежностью и малыми габаритами.
3.3 Выбор кода обмена между адаптером и персональным компьютером
3.3.1 В режиме формирования параметров проверки задача пользователя выбрать алгоритм включения (параллельный, последовательный, выборочный) цепей, необходимые цепи для включения питания (из 8) и проверки (из 16). Передать выбранные параметры в адаптер, получив ответ (корректное подключение, не корректное подключение) отобразить формат ошибки. Структура действий показана на рисунке 3.1.
3.3.2 Обмен информацией между ПЭВМ и адаптером происходит по последовательному каналу связи согласно протоколу RS-232. Согласно выбранной последовательности кодограмма обмена ПЭВМ и адаптера имеет вид представленный на рисунке 3.2.
Управляющее слово состоит из четырёх байт:
– 1 байт – номер режима;
– 1 байт – выбор цепей, к которым подключается питание;
–-2 байта – выбор цепей, подлежащих тестированию.
Рисунок 3.1 – Последовательность действий пользователя ПЭВМ
Размер поля «Выбор цепей подключения питания» определяется количеством цепей, на которые необходимо подавать питание (в нашем случае, количество цепей подачи питания – 8, поэтому выбирается 1 байт, каждый бит которого соответствует срабатыванию одного из восьми реле. Состояние логической «1» – подача питания на соответствующий ключ, состояние логического «0» – ключ остаётся в исходном состоянии). Размер поля «Выбор цепей тестирования» определяется количеством проверяемых цепей (в нашем случае, количество цепей – 16, поэтому выбирается 2 байта, каждый бит которых соответствует состоянию одной из цепей. Состояние логической «1» – осуществляется проверка, состояние логического «0» – не проверяется.
Рисунок 3.2 – Кодограмма обмена ПЭВМ и адаптера
3.3.3 Сформированная посылка размером 4 байта и содержащая параметры проверки состояния цепей передаётся в адаптер, который осуществляет подключение и проверку цепей в соответствии с заданным режимом и отправляет ответ о корректности работы проверяемого устройства в виде трёх слов состояния.
Каждое слово содержит информацию об ошибках в тестируемых цепях. Размер слова 3 байта. Первый байт отвечает за вид (форму ошибки). Возможно три варианта: ошибка состояния цепей до начала тестирования, ошибка подключения во время тестирования, ошибка восстановления после окончания тестирования. В каждом слове фиксированное значение режима. Первое слово значение первого байта 0000 0001 – ошибка состояния цепей до начала тестирования. Второе слово значение первого байта 0000 0010 – ошибка подключения во время тестирования. Третье слово значение первого байта 0000 0011 – ошибка восстановления после окончания тестирования. В каждом слове фиксированное значение режима. Второй и третий байт отвечают за номер цепи, в которых обнаружена ошибка. Один бит соответствует одной из 16 цепей. В результате ответа адаптера в ПЭВМ должно придти три слова, в которых указано номер и вид ошибки. Заданные параметры и результаты тестирования анализируются и отображаются на мониторе ПЭВМ.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем