Воздействие радиационного излучения на операционные усилители
СОДЕРЖАНИЕ
1.Основные радиационные эффекты в элементах интегральных микросхем. 1.1. Классификация радиационных эффектов. 1.2. Действие облучения на биполярные транзисторы 1.3. Действие облучения на униполярные транзисторы 1.4. Специфика эффектов в зависимости о т конструктивно-технологических особенностей ИМС |
3 |
2. Радиационные эффекты в усилительных и дифференциальных каскадах 2.1. Усилительные каскады. 2.2. Дифференциальные каскады. 2.2.1. Моделирование эффектов в дифф-каскадах. 2.2.2. Влияние ИИ на шумовые характеристики. |
5 |
3. Радиационные эффекты в ИОУ 3.1. Воздействие ИИ на параметры ИОУ. 3.2. Критериальные параметры. 3.3. Проектирование радиационно-стойких ИОУ. 3.4. Прогнозирование эффектов воздействия ИИИ на ИОУ. 3.5. Имитационные испытания. 3.6. Уменьшение ВПР электронной аппаратуры. |
8 |
5. Список использованной литературы. |
15 |
Основные радиационные эффекты в элементах аналоговых интегральных микросхем.
Классификация радиационных эффектов.
Воздействие ионизирующих излучений (ИИ) на какое-либо вещество сопровождается выделением энергии частицей ИИ. Дальнейшая релаксация полученной энергии и распределение её по объёму вещества происходят в форме различных радиационных эффектов. Принято выделять два вида основных эффектов: смещения (обусловленные смещением атомов из своего нормального положения) и ионизации (связаны с образованием свободных носителей заряда под действием ИИ).
Реакция интегральных микросхем (ИМС) на ионизирующее излучение обусловлена, в первую очередь, зависимостью параметров её элементов от эффектов смещения и ионизации. В свою очередь, конкретный вид энерговыделения (однородное, равновесное и т.п.) может приводить к появлению различных эффектов в микросхеме, особенности проявления которых определяются специфическими для нее технологическими и схемотехническими решениями. По причине возникновения эти эффекты можно подразделить на первичные - обусловленные непосредственно энергией излучения, поглощенной в ИМС (дефекты смещения, модуляция проводимости и т.п.), и вторичные - обязанные своим происхождением инициированному излучением перераспределению энергии внутренних и сторонних источников (радиационное защелкивание, вторичный фототек, пробой и т.п.).
С точки зрения функционирования ИМС в аппаратуре в зависимости от соотношения между длительностью воздействия излучения Ти и временем релаксации вызванного им возбуждения в системе Трел различают остаточные (долговременные Трел>>Ти) и переходные (кратковременные Ти>Трел) изменения параметров приборов.
Ñ Одним из основных параметров, характеризующих переходные ионизационные эффекты в элементах ИМС при равновесном энерговыделении, является величина ионизационного тока р-n-переходов, который можно представить в виде двух составляющих: 1)мгновенная составляющая, связанная с дрейфом избыточных носителей из обедненной области перехода;
2)запаздывающая составляющая, связанная с диффузией и дрейфом неравновесных носителей заряда из областей, прилегающих к обедненной области р-n-перехода. Соотношение амплитуд запаздывающей и мгновенной составляющих определяется параметрами р-n -перехода.
Ñ Долговременные изменения параметров транзисторов обусловлены эффектами смещения и ионизации.
Эффекты смещения, связанные с изменением кристаллической структуры полупроводника вследствие перемещения атомов из своего положения, вызывают изменение электрофизических свойств полупроводника: времени жизни, подвижности носителей заряда и их концентрации. Соответственно изменяются и параметры транзисторов, определяемые указанными величинами.
Эффекты ионизации, связанные с накоплением заряда в диэлектрических слоях и изменением плотности поверхностных состояний при ионизации полупроводника, также приводят к деградации параметров транзисторов.
Действие облучения на транзисторы удобно установить на основании его физических параметров, характеризующих процессы в транзисторной структуре.
Действие облучения на биполярные транзисторы.
Физические параметры биполярного транзистора можно разбить на четыре группы:
1)Параметры, характеризующие диффузию и дрейф неосновных носителей,
2)Параметры, характеризующие рекомбинацию и генерацию,
3)Параметры, определяющие изменение пространственного заряда в области p-n- переходов и его влияние на характеристики транзисторов (это зарядные емкости коллекторного и эмиттерного переходов, а также емкость изолирующих p-n-переходов)
4)Параметры, характеризующие падение напряжения в объеме полупроводника и включающие объемные сопротивления эмиттера, базы и коллектора, а при высоких уровнях инжекции также диффузионное падение напряжения (ЭДС Дембера).
Ионизирующие излучения влияют на все физические параметры транзистора, однако перечень параметров, подлежащих учету, зависит от конкретных условий применения.
Действие облучения на униполярные транзисторы.
Влияние ионизирующего излучения на параметры униполярных транзисторов как с управляющим p-n-переходом, так и МДП - структур в основном проявляется в виде изменений тока затвора I3, порогового напряжения Uзи.пор (для МДП - транзисторов с индуцированным каналом) или напряжения отсечки Uзи.отс (для транзисторов с управляющим р-п-переходом и со встроенным каналом) и крутизны характеристики транзистора Sст. Претерпевают изменение также дифференциальные параметры: сопротивление затвора rз, внутреннее сопротивление транзистора ri.
В отличие от биполярных транзисторов в униполярных транзисторах ток в канале образуется потоком основных носителей, поэтому заметные изменения характеристик униполярных транзисторов, обусловленные действием эффектов смещения, наблюдаются при уровнях облучения, способных существенно повлиять на подвижность основных носителей и их концентрацию. Для кремниевых ИМС при облучении нейтронами это происходит при флюенсах, превышающих 1015-1016 нейтр./см2. Вместе с тем приповерхностный характер происходящих в МДП-транзисторах процессов обусловливает их сильную чувствительность к ионизационным эффектам, действие которых, прежде всего, связано с накоплением положительного пространственного заряда в слое подзатворного диэлектрика, модулирующего проводимость канала МДП-транзистора.
Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС.
Специфика проявления радиационных эффектов во многом определяется конструктивно-технологическими особенностями ИМС и в некоторых случаях различается для схем низкой и высокой степени интеграции. В частности, для интегральных структур малой и средней степени интеграции, к числу которых относятся аналоговые ИМС, можно пренебречь неравновесностью энерговыделения, более слабо проявляются дозовые эффекты в биполярных структурах и т.п.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Расчет связного передатчика 27,2 МГц
- Биотехническая система электроанальгезии
- Состав и характеристика сетевого оборудования
- Биотропные параметры магнитных полей. Влияние естественных электромагнитных полей на живые организмы и механизмы воздействия
- Радиотелеметрическая система с частотным разделением товаров
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем