Воздействие радиационного излучения на операционные усилители
В модели на рис.1,б учтены фототоки, возникающие в каналах транзисторов Tl, T2 и прилегающих к каналам слоях подложки и изолирующих р-n-переходах. Действие ионизирующих излучений приводит к отклонению от нуля выходного напряжения дифференциального каскада.
Влияние ионизационных эффектов, вызываемых воздействием электронного, высокоэнергетического нейтронного и g-излучений, проявляется
прежде всего в виде заметного увеличения токов утечки и канальных токов, что приводит к росту входных токов смещения Iвх см и сдвига Iвх сд. Происходит также уменьшение коэффициента передачи тока базы bN, влияющее как на точностные характеристики каскада, так и на его усилительные параметры. Может происходить заметное изменение выходных потенциалов каскада вследствие роста тока I0 стабилизированного источника.
Анализ влияния поверхностных ионизационных эффектов требует более подробной информации о топологических и технологических особенностях изготовления элемента ИМС, а также об изменениях заряда в приповерхностных слоях. Для этого обычно используют тестовые структуры.
Как показывает анализ, приведенное к входу импульсное отклонение собственного выходного напряжения дифференциального каскада (а не всего ИОУ) от номинальной величины оказываются не столь заметными, несмотря на существенное увеличение входных токов ИОУ при импульсном воздействии.
В литературе отмечается, что отклонение выходного напряжения ИОУ от нуля при спецвоздействии обусловлено не изменением выходных потенциалов дифференциальных каскадов, а в основном происходит из-за нарушения режима по постоянному току выходных повторителей, причем это отклонение имеет одну и ту же полярность, т.е. выходное напряжение отклоняется в сторону положительного источника питания. Экспериментально было проверено, действительно ли влияние фототоков в выходных повторителях является определяющим.
Влияние ИИ на шумовые характеристики дифф-каскада.
В каскадах на биполярных транзисторах в области средних и высших частот шумового спектра, где преобладают дробовой шум токораспределения iш.к и тепловой шум объемного сопротивления базы eш.б, при облучении уровень шумов возрастает в результате деградации коэффициента передачи тока базы b и увеличения объемных сопротивлений.
Влияние теплового шума сопротивления коллекторного слоя eшк, а также шумовых сигналов паразитного транзистора iшфи, iшfи не так существенно. В области низших частот преобаладают шумы со спектром 1/f, а также низкочастотные шумы фототоков. Анализ низкочастотных шумов усложняется тем, что их изменение при облучении определяется не только объемными эффектами, но и поверхностными. Действие ионизирующих излучений приводит не тоолько к повышению уровня низкочастотных шумов, но также к увеличению граничной частоты fш, т.е. к сдвигу их спектральной плотности в область более высоких частот.
В дифференциальных каскадах на униполярных транзисторах в области средних и высших частот, где преобладают тепловой шум канала iшс и дробовой шум тока затвора iш.з шумы при облучении возрастают из-за уменьшения крутизны характеристики транзистора S и увеличения тока затвора вследствие роста тока генерации в управляющем р-n-переходе. Возрастают также низкочастотные шумы, обусловленные флуктуациями заряда токов генерации—рекомбинации в обедненном слое изолирующего р-n-перехода. При этот относительное увеличение шумового сопротивления практически не зависит от частоты.
Уровень собственных шумов каскада повышается из-за шумов фототоков, особенно при высоких импедансах источника сигнала.
Уровень шумов дифференциального каскада зависит также от схемы подачи входного сигнала и съема выходного напряжения. На практике нередко подают сигнал только на один из входов каскада По отношению к этому входу интенсивность первичного шумового напряжения возрастает.
Сравнение дифференциальных каскадов на биполярных и униполярных транзисторах по их шумовым показателям в области средних частот показывает, что в первых из них при работе от источников с Rг >> 103 Ом уровень шума выше. Следует иметь в виду, что каскады на униполярных транзисторах менее критичны к выбору оптимального сопротивления источника входного сигнала, а поэтому изменение условия оптимальности при облучении не приводит к дополнительному увеличению шума.
Радиационные эффекты в ИОУ.
Воздействие ИИ на параметры ИОУ.
Интегральные операционные усилители (ИОУ) представляют собой высококачественные прецизионные усилители, которые относятся к классу универсальных и многофункциональных аналоговых микросхем. Радиационная стойкость аналоговых ИМС определяется не только влиянием ионизирующих излучений на характеристики элементов микросхемы, но она зависит также от структуры ИМС и схемотехнических особенностей. Поскольку большинство современных аналоговых ИМС построены по структуре ИОУ, то на их примере можно выяснить влияние радиационных эффектов на характеристики аналоговых микросхем.
Специализированные ИОУ частного применения, к числу которых относятся микросхемы с повышенным входным сопротивлением, прецизионные и микромощные ИОУ, быстродействующие усилители [11], обычно более чувствительны к остаточным радиационным эффектам, так как схемотехнические и технологические меры, применяемые для достижения предельных возможностей по каким-либо параметрам, как правило, приводят к снижению их радиационной стойкости. Особенно чувствительны к воздействию облучения ИОУ при работе в микрорежиме. Это объясняется тем, что в микрорежиме деградация параметров транзисторов происходит при более низких флюенсах.
Причиной нарушения нормальной работы ИОУ являются также переходные ионизационные эффекты, обусловленные образованием мощных импульсов фототоков во всех областях кристалла, включая не только области, где формированы рабочие транзисторы, диодные структуры, диффузионные резисторы, но также изолирующие и приповерхностные слои ИМС. Изоляция р-n-переходами является серьезным недостатком ИОУ, работающих в полях ионизирующих излучений. Воздействие γ-излучения, электронного и высокоэнергетического нейтронного (Е„ > 14 МэВ) излучений приводит к образованию через изолирующие p-n-переходы мощных фототоков, которые могут быть причиной нарушения электрической изоляции р- и n-областей, возрастания рассеиваемой мощности, возникновения тиристорного эффекта, пробоя как в рабочих, так и в паразитных транзисторах. Значительный вклад в образование фототоков вносят участки подложки, прилегающие к изолирующим p-n-переходам. Поэтому эти токи можно заметно уменьшить легированием подложки с тыльной стороны золотом, уменьшающим время жизни носителей в подложке. Наиболее эффективным способом уменьшения фототоков является применение диэлектрической изоляции, а также использование пленочных резисторов вместо диффузионных.
Воздействие ионизирующего излучения сказывается также на частотных и импульсных характеристиках ИОУ в области малых времен. При облучении, создающем объемные структурные повреждения, частота единичного усиления для некорректированного ИОУ меняется незначительно вплоть до флюенсов 1015 нейтр./см2 и более. Верхняя граничная частота для большинства ИОУ возрастает, что объясняется уменьшением коэффициентов усиления каскадов, вследствие чего уменьшается влияние паразитных емкостей. Эти изменения приводят к снижению запаса устойчивости, oднако поскольку в реальных условиях последняя тоже уменьшается, то в итоге при облучении самовозбуждение ИОУ маловероятно.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем