Измерение характеристик случайных сигналов

Статистические измерения – это методы и средства измерения параметров и характеристик случайных сигналов. Они базируются на общих принципах измерений параметров сигналов, но имеют свою специфику и особенности, вытекающие из теории случайных процессов.

Вероятностные характеристики случайных сигналов

Случайным называется сигнал, мгновенные значения которого изм

еняются во времени случайным образом. Он описывается случайной функцией времени Х(t). Эту функцию можно рассматривать как бесконечную совокупность функций xi(t), каждая из которых представляет собой одну из возможных реализаций X(t). Графически это можно представить следующим образом (рисунок 1):

Полное описание случайных сигналов может быть произведено с помощью системы вероятностных характеристик. Любая из этих характеристик может быть определена либо усреднением по совокупности реализации xi(t), либо усреднением по времени одной бесконечно длинной реализации.

Зависимость или независимость результатов таких усреднений определяет следующие фундаментальные свойства случайных сигналов – стационарность и эргодичность.

Стационарным называется сигнал, вероятностные характеристики которого не зависят от времени.

Эргодическим называется сигнал, вероятностные характеристики которого не зависят от номера реализации.

Для стационарных эргодических сигналов усреднение любой вероятностной характеристики по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Для практических целей наиболее важными являются следующие вероятностные характеристики стационарных эргодических сигналов, имеющих длительность реализации Т:

- среднее значение (математическое ожидание). Оно характеризует постоянную составляющую сигнала

; (1)

- средняя мощность. Она характеризует средний уровень сигнала

; (2)

- дисперсия, характеризующая среднюю мощность переменной составляющей сигнала:

; (3)

- среднеквадратическое отклонение (СКО)

; (4)

- функция распределения, которая определяется как интегральная вероятность того, что значение xi(tj) в j-й момент времени будут ниже некоторых значений X:

. (5)

Для заданных стационарных эргодичных сигналов Fx характеризуется относительным временем пребывания реализации ниже уровня Х (τi –, i –й интервал пребывания, n – количество интервалов, рисунок 2)

- одномерная плотность вероятности, называемая дифференциальным законом распределения:

, (6)

где - расстояние между соседними уровнями X(t), называемое дифференциальным коридором;

- i –й интервал пребывания реализации в пределах (см. рисунок 1.11).

- корреляционная функция. Она характеризует стохастическую (случайную) связь между двумя мгновенными значениями случайного сигнала, разделенного заданным интервалом времени τ

; (7)

- взаимная корреляционная функция. Она характеризует стохастическую связь мгновенными значениями случайных сигналов x(t) и y(t), разделенными интервалом времени τ

. (8)

Из выражений (1)-(8) видно, что все вероятностные характеристики представляют собой неслучайные числа или функции и определяется по одной реализации бесконечной длительности. Практически же длительность Т, называемая продолжительностью анализа, всегда ограничена, поэтому на практике мы можем определить не сами характеристики, а только их оценки. Эти оценки, полученные экспериментальным путем, называются статическими характеристиками. А раз оценка, значит приближение, которое характеризуется погрешностями, называемыми статистическими погрешностями.

Измерение среднего значения средней мощности и дисперсии

Согласно формуле (1) измерение mx сводится к интегрированию случайного сигнала за время Т. Интегрирование можно выполнить с помощью анало-

говых или цифровых интегрирующих устройств, применяемых в вольтметрах.

При практическом выборе времени интегрирования Т надо минимизировать статистические погрешности. Это условие соблюдается при Т(τм.к. – максимальный интервал корреляции, за пределами которого выборки сигнала можно считать практически некоррелированными).

Измерение Px характерно тем, что согласно формуле (2) усредняется квадрат сигнала, поэтому измеритель Px содержит в своем составе устройство с квадратичной характеристикой. Задача измерения Px решается с помощью вольтметра среднеквадратичного значения, имеющего открытый вход. Показания такого вольтметра равно . К вольтметрам, измеряющим Px, предъявляются повышенные требования в отношении широкополосности, протяженности квадратичного участка характеристики детектирования и времени усреднения Т.

Для измерения Dx тоже может быть использован вольтметр среднеквадратичного значения, только в соответствии с формулой (3) он должен иметь закрытый вход. Показания такого вольтметра согласно (4) будут соответствовать значениям σх.

Анализ распределения вероятностей

Метод измерения по относительному времени пребывания

При измерении этим методом удобнее измерять не значение τi, фигурирующее в формуле (7), а значение τi’, характеризующее время пребывания функции х(t) выше уровня х, поэтому при экспериментальном анализе определяется функция

, (9)

Для определения в соответствии с формулой (7) необходимо образовать дифференциальный коридор ∆х, как показано на рисунке 3, и измерить кроме значений τi’ еще и τi’’, характеризующее время пребывания реализации х(t) выше уровня х+∆х, причем

∆t¢i=∆t1i+∆t2i= τ¢i– τ²i . (10)

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы