Радиопередатчик с частотной модуляцией
1. Постановка задачи (задание)
2. Введение
3. Выбор и обоснование структурной схемы
4. Расчет выходного усилителя мощности
4.1 Выбор транзистора
4.2 Расчет электронного режима транзистора
4.2.1 Коллекторная цепь
4.2.2 Базовая цепь
4.3 Расчет элементов схемы усилителя и согласующих цепей
4.3.1 Расчет цепей питания
4.3.2 Расчет входной согласующей цепи <
p>4.3.3 Расчет выходной согласующей цепи
5. Расчет кварцевого автогенератора
5.1 Выбор кварцевого резонатора и транзистора
5.2 Расчет параметров колебательной системы АГ
5.3 Расчет параметров режима работы транзистора
5.4 Расчет параметров элементов цепи питания и смещения
5.5 Расчет варикапа
5.6 Расчет элементов цепи генератора
6. Расчет умножителя частоты
6.1 Выбор типа транзистора и расчет его режима работы
6.2 Расчет элементов схемы
7. Уточнение структурной схемы
8. Схема электрическая принципиальная радиопередатчика
9. Описание конструкции
9.1 Описание корпуса
9.2 Уточнение используемых радиодеталей
9.3 Габаритные размеры радиодеталей и радиокомпонентов
9.4 Расчет катушки индуктивности
1. Постановка задачи (задание)
радиопередатчик модуляция генератор резонатор
Радиопередатчик с ЧМ
1. Назначение устройства: связной.
2. Мощность: Рвых=1,3 Вт
3. Диапазон волн (частот): fвых=310 МГц
4. Характеристики сигналов, подлежащих передаче: частотная модуляция
5. Место установки: носимый
6. Дополнительная нестабильность частоты
7. Сопротивление нагрузки: 50 Ом
8. Питание батарейное.
2. Введение
Разрабатываемый передатчик (носимый) будет использоваться для связи между группами людей. Например, между поисковыми отрядами и координационным центром, так и между отрядами, для уточнения действий, получения заданий, сообщения об окружающей обстановке. Поэтому передатчик должен обладать следующими качествами: быть достаточно простым и надежным в использовании, иметь достаточно низкие массогабаритные характеристики, иметь продолжительный ресурс работы и возможность замены элементов питания. Исходя из условий эксплуатации (вне помещений) передатчик должен быть защищен от воздействий окружающей среды и устойчив к перепадам температур.
3. Выбор и обоснование структурной схемы
Исходя из требований к передатчику, выбираем наиболее простую и экономичную в реализации схему: один генератор, умножительные и усилительные каскады. Частотную модуляцию будем осуществлять простым в реализации прямым методом, когда изменение частоты производится в задающем генераторе. Т.к. заданы высокие требования к допустимой нестабильности частоты , в качестве задающего генератора будем использовать автогенератор с кварцевым резонатором, в котором кварц работает на основной гармонике. Поэтому для получения на выходе заданной частоты fвых=305 МГц будем использовать каскады умножения частоты. Использование транзисторных умножителей частоты позволяет, как повысить частоту (и девиацию частоты) в "n" раз, так и увеличить мощность входного сигнала, но с ростом коэффициента умножения частоты "n" падает выходная мощность и КПД, поэтому возьмем два каскада умножения частоты на 2 и на 3. Таким образом, кварцевый резонатор будет работать на частоте основной гармоники МГц. Т.к. оконечный каскад- усилитель мощности (УМ) потребляет больше всего энергии, то будем его проектировать с высоким КПД. Для возбуждения оконечного каскада и получения требуемой мощности применим цепочку каскадов УМ. В передатчике используется батарейное питание, поэтому нужно стремиться получить высокие значения КПД каскадов. Расчет начнем с оконечного каскада УМ. Примем КПД согласующих цепей ηСЦ=0.8, тогда мощность на выходе каскада , задаем его коэффициент усилением по мощности KP=9, тогда мощность возбуждения на входе должна быть . Задаем мощность на выходе кварцевого генератора: . Далее зададим усиление по мощности каждого из каскадов на основе инженерного опыта. С учетом согласующих цепей получаем следующие значения:
1. Оконечный каскад УМ KP=7.5, .
2. Буферный усилитель мощности, для усиления мощности после кварцевого генератора: KP=5,
3. Умножитель частоты на 2, , KP=5,
4. Умножитель частоты на 2, , KP=5,
5. Умножитель частоты на 3 KP=3,
Получаем, что промежуточный усилитель должен обеспечить . Тогда мощность на входе оконечного каскада .
Структурную схему передатчика:
,
Проведем расчет трех каскадов: выходной усилитель мощности, кварцевый генератор и умножителя частоты на 2.
4. Расчет выходного усилителя мощности
Расчет начинаем с выходного усилительного каскада, т.к. он обеспечивает необходимую выходную мощность передатчика: Рвых=1.3 Вт.
Исходные данные берем из предварительного расчета структурной схемы:
- выходная мощность каскада Рвых1=1.625 Вт,
- частота f=310 МГЦ,
- сопротивление нагрузки 50 Ом,
также выбираем транзистор 2Т925А. Его параметры приведены в таблицах:
Тип прибора |
Предельные эксплуатационные данные | ||||||||||
|
|
|
|
|
|
|
|
|
| ||
В |
А |
|
|
|
МГц | ||||||
2Т925А |
Э |
36 |
4 |
1,0 |
0,5 |
1.8 |
20 |
150 |
85 |
13.5 |
200 400 |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем