Решение задач по высшей математике
Найти:
- длину стороны АВ
- уравнение стороны АВ
- уравнение медианы АD
- уравнение высоты СЕ
- уравнение прямой, проходящей через вершину С, параллельно стороне АВ
- внутренний угол при вершине А
- площадь треугольника АВС
- координаты точки Е
- сделать чертеж
Решение:
1. Длина стороны АВ:
½АВ½= » 5,385
2. Уравнение прямой, проходящей через две заданные точки:
; ;
у = - уравнение прямой АВ, угловой коэффициент kAB= 2/5
3. Медиана АD делит сторону ВС, противоположную вершине А, пополам.
Координаты середины ВС:
х4 = (х2 + х3)/2 = 3,5, у4 = (у2 + у3)/2 = 3
D (-3,5;3)
Уравнение прямой, проходящей через две заданные точки, А и D:
; -5,5у = -16,5
у = 3- уравнение прямой АD
3. Высота СЕ перпендикулярна АВ, а значит угловой коэффициент высоты СЕ равен
Уравнение прямой, проходящей через заданную точку (х3¸у3) и имеющей угловой коэффициент kСЕ, имеет вид:
у – у3 = kСЕ (х – х3); у – 5 = -2,5(х+4)
у = -2,5х -5 – уравнение высоты СЕ.
5. Если прямые параллельны, то их угловые коэффициенты равны. Уравнение прямой, проходящей через точку С (х3¸у3) и имеющей угловой коэффициент kАВ, имеет вид:
у – у3 = kАВ (х – х3); у – 5 = х +,
у = х +, - уравнение прямой, параллельной АВ.
6. Косинус внутреннего угла при вершине А вычисляется по формуле:
, где
- длины сторон АВ и АС соответственно.
,
ÐА = arc cos 0,7643 = 40о9'
7. Площадь треугольника АВС вычисляется по формуле:
S = ½ç(x2 – x1)(y3 – y1) – (x3 – x1)(y2 – y1)ç;
S= ½ ç(-5)·2 – (-2) ·(-6)ç = 22/2 = 11 кв.ед.
8. Координаты точки Е находим, решая совместно уравнения АВ и СЕ, т.к точка Е принадлежит им обоим:
у = -2,5х -5
у =
0,4х +2,2 = -2,5х -5 2,9х = -7,2 х = -2,5
у = 6,25 – 5 = 1,25 Е(-2,5;1,25)
Задача 40
Привести уравнение кривой второго порядка к каноническому виду. Построить кривую.
у2 + 2x - 2y -1 = 0
Решение:
Выделяем полные квадраты:
у2- 2у +1 + 2х- 2 = 0
(у - 1)2 = -2(х - 1)
(х - 1) =-1/2(у - 1)2 – это уравнение параболы с центром в точке (1,1), ось симметрии – прямая
у = 1, ветви параболы направлены влево.
Задача 50
Вычислить пределы.
1)
2)
3)
4)
так как -первый замечательный предел
5) , (a>0)
Обозначим х-а = t. Если х→а, то t→0, х = t+a, ln x-ln a =
где -– второй замечательный предел.
Задача 60
Найти производные функций:
1) y =
y¢ =
2) у =
3) y =
y¢ =
4) y = ctg(excosx);
y¢=
Задача 70
Провести полное исследование функции и построить ее график.
у = ;
Решение:
1. Область определения функции: х Î (-¥; +¥).
2. Поведение функции на границах области определения:
3. у¢= х3 – х2 = х2(x-1); у¢= 0, если х1 = 0, х2 = 1;
При х Î (-¥; 0), у¢< 0, функция убывает.
При х Î (0;1), у¢< 0, функция убывает.
В точке х = 0 экстремума нет.
При х Î (1;+∞), у¢> 0, функция возрастает.
В точке х =1 функция имеет локальный минимум.
4. уmin = 1/4 - 1/3 = - 1/12.
5. Выпуклость, точки перегиба графика функции:
у²= 3х2 – 2х = x(3x-2).
у²= 0, если 2х(6х -1) = 0, х1 = 0, х2 = 2/3;
При х < 0, у²> 0, график вогнутый.
При 0 < х < 2/3, у²< 0, график выпуклый.
При х > 2/3, у²> 0, график вогнутый.
Точки х1 = 0 и х2 = 2/3 - точки перегиба графика функции.
у(0) = 0, у(2/3 ) » -0,05
6. Точки пересечения с осями координат:
С осью ОХ. у = 0, = 0 х1 = 0, x2 = 4/3
С осью ОУ. х = 0, у= 0.
Задача 80
Найти частные производные первого и второго порядка функций.
z = x2∙sin y + y2∙cos x;
Решение:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах