Прогнозирование функций по методу наименьших квадратов
Введение
В качестве тренда процесса был выбран линейный тренд вида
Y=at+b, (23)
где а=1, b=2. Тренд процесса показан на рисунке 3.
Рисунок 3. График тр
енда
График прямой с учетом сгенерированного шума по логнормальному закону выглядит так:.
Рисунок 4. График прямой с учетом шума.
Наша задача в курсовом проекте заключается в определении насколько сильно шум влияет на прогнозирование. Для этого мы определяем расхождения между трендом и прогнозом и оцениваем степень расхождения из-за шума по критерию Пирсона
1. Построение прямой аппроксимирующей свойства тренда с помощью МНК
Наша ошибка сгенерирована по логнормальному закону с математическим ожиданием равным 0 и дисперсией равной 1. Гистограмма распределения шума представлена на рисунке 5.
Рисунок 5. (Гистограмма распределения значений шума по интервалам).
С помощью формул (21) и (22) вычислим коэффициенты линейного уравнения тренда с учетом шума с помощью метода МНК:
По найденным коэффициентам строим график прямой, которая аппроксимирует основные свойства линейного тренда. График показан на рисунке 6:
Рисунок 6. (Прямая, построенная по методу наименьших квадратов).
2. Прогнозирование дальнейшего продвижения тренда
Наша задача состоит в том, чтобы спрогнозировать дальнейшее поведение уравнения тренда и определить расхождения с спрогнозированными значениями.
Для этого увеличиваем участок наблюдения за линейным трендом без шума до τ =2t=50
График расхождения исходного тренда и аппроксимированного тренда по МНК виден на рисунке 7. (Yτ – исходный тренд; Zτ – аппроксимированный тренд по МНК)
Рисунок 7 (На рисунке показаны тренд и аппроксимирующая его свойства прямая, построенная по методу наименьших квадратов).
Расхождения вычислены на удаленно отрезке(τ=50):
Δ= Zτ - Yτ =0.864
Проведем серию из 25 экспериментов по вычислению расхождений Δ по модулю:
N |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
Δ |
0.661 |
0.673 |
0.756 |
2.366 |
0.488 |
3.569 |
0.864 |
5.651 |
2.328 |
0.851 |
1.259 |
1.718 |
0.618 |
N |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 | |
Δ |
3.765 |
0.502 |
3.762 |
1.369 |
2.185 |
0.494 |
1.851 |
0.067 |
2.012 |
4.429 |
3.441 |
0.601 |
Рассчитаем среднее значение Δ и среднеквадратичное отклонение по формулам (6) и (8):
Δср=1.851; σ=1.484
График на рисунке 8 отображает расхождения между исходной функцией и прямыми, полученными в результате аппроксимации по МНК. Синим цветом показаны полученные прямые, красным - исходная функция.
Рисунок 8. (На рисунке показаны тренд и несколько прямых, построенных по методу наименьших квадратов и аппроксимирующих свойства тренда).
3. Анализ результатов эксперимента
Полученные значения расхождений Δ представим в виде гистограммы и эмпирической функции по интервалам на рисунке 9:
Рисунок 9. (На рисунке представлены гистограмма распределения значений Δ по интервалам, а так же график функции распределения Δ).
Из рисунков видно, что закон Δ больше всего похож на логнормальный, поэтому для сравнения оценки расхождения распределения сгенерируем выборку объемом в 25 (а так же выборки объемом 100, 500 и 1500) по логнормальному закону с математическим ожиданием 0 и дисперсией 1 и вычислим параметры.
Сгенерированная выборка:
N |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
xL |
3.532 |
0.494 |
1.002 |
3.027 |
2.441 |
0.055 |
0.116 |
1.229 |
0.54 |
0.302 |
1.104 |
2.161 |
1.358 |
N |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 | |
xL |
1.011 |
0.466 |
0.664 |
0.51 |
0.876 |
2.768 |
1.198 |
1.671 |
2.095 |
0.984 |
1.322 |
1.176 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах