Прогнозирование функций по методу наименьших квадратов

Количество

экспериментов

Критическое значение χ²

Эмпирическое значение χ²

Решение

2

5

21.064

12.251

Гипотеза H0 принимается

100

21.064

11.616

Гипотеза H0 принимается

500

21.064

11.503

Гипотеза H0 принимается

1500

21.064

14.31

Гипотеза H0 принимается

10000

21.064

11.275

Гипотеза H0 принимается

Отклонение тренда от прогноза при шуме, распределенном по нормальному закону распределении, так же подчиняется нормальному закону распределения, что было подтверждено экспериментально.

Заключение

а) на основании проведенных экспериментов и анализа полученных данных можно сделать вывод, подтверждающий, что логнормальное распределение является неустойчивым к линейным преобразованиям, причем с ростом числа наблюдений расхождение будет существенно возрастать;

б) при аппроксимации линейного тренда, к которому был добавлен шум, распределенный по логнормальному закону распределение все прямые, построенные по методу наименьших квадратов, всегда проходили выше прямой тренда. Это является следствием влияния ошибки наблюдений, которая была положительной величиной и говорит о том, что эффективность метода наименьших квадратов при аппроксимации тренда с положительной ошибкой наблюдений ниже, чем при аппроксимации тренда с ошибкой наблюдения, имеющее разные знаки;

в) при аппроксимации линейного тренда, к которому был добавлен шум, распределенный по нормальному закону, распределение отклонения прогноза от тренда так же подчинено нормальному закону распределения, в силу устойчивости последнего к линейным преобразованиям, но, из-за преобразований меняется его дисперсия (в нашем случае увеличивается в среднем на 12%), что было экспериментально подтверждено с использованием критерия Пирсона.

Список использованных источников

1. В.В. Бомас, В.С. Булыгин «Элементы теории Марковских процессов и ее технические приложения».

2. Феллер «Введение в теорию вероятностей и ее приложения»

3. Е.С. Вентцель «Теория вероятностей».

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы