Прогнозирование функций по методу наименьших квадратов
Оценки математического ожидания, дисперсии и СКО рассчитаем по формулам:
(24)
M[xL]=1.284; D[xL]=0.848; σ[xL]=0.921
На рисунке 10 показана гистограмма и эмпирическая функция по сге
нерированной выборке:
Рисунок 10. (На рисунке показанная функций распределения, а так же гистограмма распределения значений по интервалам для случайной величины, распределенной по логнормальному закону распределения с выборкой 25).
4. Проверка близости по критерию χ2 Пирсона закона распределения расхождений наблюдений и сгенерированного шума
Проверим насколько расходятся значения при прогнозе и по тренду. Для этого определяются интервалы разбиения расхождений прогноза и вычисление вероятностей попасть в интервал по логнормальному закону с математическим ожиданием равным 0 и дисперсией 1 по формуле (9).
Далее посчитаем сумму квадратов расхождения между частотами и вероятностью попасть в интервал логнормального закона:
(25)
На основе суммы квадратов расхождения Δрасх можно посчитать расчетное значение критерия согласия Пирсона:
(26)
На полигоне частот (рисунок 11) показаны значения частоты распределения чисел по интервалам и вероятностей попадания в эти интервалы.
Теоретическое значение критического значения критерия Пирсона при уровне значимости α=0.1 и числом степеней свободы r=m-1 рассчитаем по формуле (11).
Рисунок 11.
(На рисунке показано расхождения между частотой попадания случайной величины в интервал и функцией распределения для попадания в этот интервал для выборок 25, 100, 500 и 1500. Случайная величина распределена по логнормальному закону распределения).
Ставится гипотеза: H0 – расхождение между прогнозом и трендом распределено по логнормальному закону
Количество экспериментов |
Критическое значение χ² |
Эмпирическое значение χ² |
Решение |
25 |
21.064 |
26.135 |
Гипотеза H0 отвергается |
100 |
21.064 |
65.549 |
Гипотеза H0 отвергается |
500 |
21.064 |
102.753 |
Гипотеза H0 отвергается |
1500 |
21.064 |
241.778 |
Гипотеза H0 отвергается |
Так как в результате опытов выяснилось, что расхождение с ожидаемыми результатами велико, то в таком случае проверим правильность работы нашей модели, сгенерировав шум по нормальному закону распределения и проанализируем результаты.
Рисунок 12.
(На рисунке показано расхождения между частотой попадания случайной величины в интервал и функцией распределения для попадания в этот интервал для выборок 25, 100, 500, 1500 и 10000. Случайная величина распределена по нормальному закону распределения, для проверки взято теоретическое распределение с параметрами mx=0 и Dx=1).
Поставим гипотезу: H0 – расхождение между прогнозом и трендом распределено по нормальному закону распределения (с параметрами mx=0 и Dx=1).
Количество экспериментов |
Критическое значение χ² |
Эмпирическое значение χ² |
Решение |
25 |
21.064 |
14.865 |
Гипотеза H0 принимается |
100 |
21.064 |
10.266 |
Гипотеза H0 принимается |
500 |
21.064 |
9.161 |
Гипотеза H0 принимается |
1500 |
21.064 |
32.575 |
Гипотеза H0 отвергается |
10000 |
21.064 |
114.286 |
Гипотеза H0 отвергается |
Отвержение гипотезы H0 о распределении случайной величины по нормальному закону при выборках 1500 и 10000 с параметрами mx=0 и Dx=1 свидетельствует об изменении параметров закона распределения (т.к. нормальный закон устойчив к линейным преобразованиям и сам закон не меняется), что является следствием линейных преобразований. Используем для проверки гипотезы о законе распределения с помощью критерия Пирсона теоретический закон распределения с дисперсией, равной оценке дисперсии отклонения прогноза от тренда, вычисленной по методу моментов.
Рисунок 13.
(На рисунке показано расхождения между частотой попадания случайной величины в интервал и функцией распределения для попадания в этот интервал для выборок 25, 100, 500, 1500 и 10000. Случайная величина распределена по нормальному закону распределения, для проверки взято теоретическое распределение с параметрами mx=0 и Dx= DΔ (DΔ =1.343; 1.149; 1,235; 1.158; 1.141)).
Поставим новую гипотезу: H0 – расхождение между прогнозом и трендом распределено по нормальному закону распределения (с параметрами mx=0 и Dx=DΔ).
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах