Предельные точки
Теорема 2. Пересечение любого множества замкнутых множеств замкнуто.
Доказательство. Пусть и все замкнуты. Если и , то все h=53 height=24 src="images/referats/11748/image131.png">при любом , а потому и при любом . Следовательно, , и замкнуто.
В дальнейшем важную роль будет играть операция замыкания произвольного множества , заключающаяся в присоединении к множеству пределов всех сходящихся последовательностей его точек. Получаемое таким образом множество обозначается и называется замыканием множества .
В замыканием интервала , будет отрезок . Однако в произвольном метрическом пространстве для замыкания открытого шара имеет место лишь включение , но равенство вовсе не обязательно.
Лемма 1: всякая точка представима в виде , где .
Лемма 2: для того чтобы , необходимо и достаточно, чтобы, каково бы ни было , существовала такая точка , что .
Теорема 3. Замыкание любого множества замкнуто.
Теорема 4. Замыкание есть наименьшее замкнутое множество, содержащее .
Пусть . Если к множеству добавить все его предельные точки, то получим множество, называемое замыканием и обозначим его так: .
У замкнутого множества предельных точек, не принадлежащих ему, нет. В самом деле, любая точка есть внутренняя точка множества . Таким образом, если — замкнутое множество, то .
Точка называется точкой сгущения множества M, если в каждой ее окрестности содержится хоть одна точка множества M, отличная от .
Точки сгущения для открытой области, не принадлежащие ей, называются пограничными точками этой области. Пограничные точки в их совокупности образуют границу области. Открытая область вместе с границей называется замкнутой областью. Напомню, что открытой областью называется множество, целиком состоящее из внутренних точек.
3. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве
Пусть функция задана на множестве . Говорят, что она непрерывна в точке на множестве , если для любой последовательности точек , сходящейся к .
Заметим, что согласно данному определению любая функция, определенная на , непрерывна в изолированных точках .
Точка называется изолированной, если существует шарик с центром в , не содержащий в себе других точек , кроме . Поэтому если задано, что и , то это может быть, лишь если для некоторого будет для всех , но тогда
. (1)
Если функция , определенная на , непрерывна в любой точке , то говорят, что непрерывна на .
Докажем две теоремы, выражающие замечательные свойства функций, непрерывных на ограниченном замкнутом множестве; они обобщают соответствующие свойства непрерывных функций от одной переменной, заданных на отрезке.
Теорема 1. Функция , непрерывная на замкнутом ограниченном множестве , ограничена на нем.
Доказательство. Допустим, что она не ограничена на ; тогда для любого натурального к найдется такая точка , что
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах