Сущность метода Монте-Карло и моделирование случайных величин

Введение

Метод Монте-Карло – это численный метод решения математических задач при помощи моделирования случайных величин.

Датой рождение метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «Метод Монте-Карло» (Н. Метрополис, С. Улам). Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В нашей стране первые статьи были

опубликованы в 1955–56 гг. (В.В. Чавчанидзе, Ю.А. Шрейдер, В.С. Владимиров)

Однако теоретическая основа метода была известна давно. Кроме того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т.е. фактически методом Монте-Карло. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, так как моделировать случайные величины вручную – очень трудоёмкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом, а одним из простейших механических приборов для получения случайных величин является рулетка.

Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались малопригодными. Далее его влияние распространилось на широкий круг задач статистической физики, очень разных по своему содержанию. К разделам науки, где всё в большей мере используется метод Монте-Карло, следует отнести задачи теории массового обслуживания, задачи теории игр и математической экономики, задачи теории передачи сообщений при наличии помех и ряд других.

Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их. Его применение оправдано в первую очередь в тех задачах, которые допускают теоретико-вероятностное описание. Это объясняется как естественность получения ответа с некоторой заданной вероятностью в задачах с вероятностным содержанием, так и существенным упрощением процедуры решения.

В подавляющем большинстве задач, решаемых методами Монте-Карло, вычисляют математические ожидания некоторых случайных величин. Так как чаще всего математические ожидания представляют собой обычные интегралы, в том числе и кратные, то центральное положение в теории методов Монте-Карло занимают методы вычисления интегралов.

1. Теоретическая часть

1.1 Сущность метода Монте-Карло и моделирование случайных величин

Предположим, что нам необходимо вычислить площадь плоской фигуры . Это может быть произвольная фигура, заданная графически или аналитически (связная или состоящая из нескольких частей). Пусть это будет фигура, заданная на рис. 1.1.

Рис. 1.1

Предположим, что эта фигура расположена внутри единичного квадрата.

Выберем внутри квадрата случайных точек. Обозначим через число точек, попавших внутрь фигуры . Геометрически видно, что площадь фигуры приближенно равна отношению . Причем, чем больше число , тем больше точность этой оценки.

Для того чтобы выбирать точки случайно, необходимо перейти к понятию случайная величина. Случайная величина непрерывная, если она может принимать любое значение из некоторого интервала .

Непрерывная случайная величина определяется заданием интервала , содержащего возможные значения этой величины, и функции , которая называется плотностью вероятностей случайной величины (плотностью распределения ). Физический смысл следующий: пусть - произвольный интервал, такой что , тогда вероятность того, что окажется в интервале , равна интегралу

(1.1)

Множество значений может быть любым интервалом (возможен случай ). Однако плотность должна удовлетворять двум условиям:

1) плотность положительна:

; (1.2)

2) интеграл от плотности по всему интервалу равен 1:

(1.3)

Математическим ожиданием непрерывной случайной величины называется число

(1.4)

Дисперсией непрерывной случайной величины называется число:

Нормальной случайной величиной называется случайная величина , определённая на всей оси и имеющая плотность

(1.5)

где - числовые параметры

Любые вероятности вида легко вычисляются с помощью таблицы, в которой приведены значения функции

, называемой обычно интегралом вероятностей.

Согласно (1.1)

В интеграле сделаем замену переменной , тогда получим

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы