Сущность метода Монте-Карло и моделирование случайных величин
(2.10)
и рассмотрим процедуру вычисления:
из множества равномерно распределённых случайных чисел выбирается . Для каждого значения вычисляется , затем вычисляется среднее значение
(2.11)
функции на интервале
Таким образом, величина интеграла (2.10) может быть представлена в виде следующей формулы
(2.12)
Рассмотренный частный случай находит широкое применение интегралов методом статистического моделирования в силу того, что границы области определения могут быть легко приведены к пределам интегрирования
1.3 Вычисление кратных интегралов
Обычно при вычислении кратных интегралов методом Монте-Карло используют один из двух способов.
Первый способ.
Пусть требуется вычислить кратный интеграл
(3.1)
по области G, лежащей в мерном единичном кубе
Выберем равномерно распределённых на отрезке последовательностей случайных чисел
Тогда точки можно рассматривать как случайные, равномерно распределённые в мерном единичном кубе.
Пусть из общего числа случайных точек точек попали в область G, остальные оказались вне G. Тогда при достаточно большом имеет место приближенная формула:
(3.2)
где под понимается мерный объём области интегрирования. Если вычисление объёма затруднительно, то можно принять , и для приближенного вычисления интеграла получим:
(3.3)
Указанный способ можно применить к вычислению кратных интегралов и для произвольной области , если существует такая замена переменных, при которой новая область интегрирования будет заключена в мерном единичном кубе.
Второй способ.
Если функция , то интеграл (3.1) можно рассматривать как объём тела в мерном пространстве, т.е.
(3.5)
где область интегрирования определяется условиями
Если в области , то введя новую переменную , получим
где область лежит в единичном мерном кубе
Возьмём равномерно распределенных на отрезке случайных последовательностей
Составим соответствующую последовательность случайных точек
Пусть из общего числа случайных точек точек принадлежат объёму , тогда имеет место приближенная формула
(3.6)
2. Практическая часть
2.1 Пример 1
Вычислим приближенно интеграл
Точное значение его известно:
Используем для вычисления две различные случайные величины , с постоянной плотностью (т.е. равномерна распределена в интервале ) и с линейной плотностью .Линейная плотность более соответствует рекомендации о пропорциональности и . Поэтому следует ожидать, что второй способ вычисления даст лучший результат.
1) Пусть , формула для разыгрывания имеет вид . А формула (2.2) примет вид .
Пусть . В качестве значений используем тройки чисел из табл. 1 (см. приложение), умноженные на 0.001. Промежуточные результаты сведены в табл. 2.1. Результат расчёта
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах