Сущность метода Монте-Карло и моделирование случайных величин

(2.10)

и рассмотрим процедуру вычисления:

из множества равномерно распределённых случайных чисел выбирается . Для каждого значения вычисляется , затем вычисляется среднее значение

(2.11)

функции на интервале

Таким образом, величина интеграла (2.10) может быть представлена в виде следующей формулы

(2.12)

Рассмотренный частный случай находит широкое применение интегралов методом статистического моделирования в силу того, что границы области определения могут быть легко приведены к пределам интегрирования

1.3 Вычисление кратных интегралов

Обычно при вычислении кратных интегралов методом Монте-Карло используют один из двух способов.

Первый способ.

Пусть требуется вычислить кратный интеграл

(3.1)

по области G, лежащей в мерном единичном кубе

Выберем равномерно распределённых на отрезке последовательностей случайных чисел

Тогда точки можно рассматривать как случайные, равномерно распределённые в мерном единичном кубе.

Пусть из общего числа случайных точек точек попали в область G, остальные оказались вне G. Тогда при достаточно большом имеет место приближенная формула:

(3.2)

где под понимается мерный объём области интегрирования. Если вычисление объёма затруднительно, то можно принять , и для приближенного вычисления интеграла получим:

(3.3)

Указанный способ можно применить к вычислению кратных интегралов и для произвольной области , если существует такая замена переменных, при которой новая область интегрирования будет заключена в мерном единичном кубе.

Второй способ.

Если функция , то интеграл (3.1) можно рассматривать как объём тела в мерном пространстве, т.е.

(3.5)

где область интегрирования определяется условиями

Если в области , то введя новую переменную , получим

где область лежит в единичном мерном кубе

Возьмём равномерно распределенных на отрезке случайных последовательностей

Составим соответствующую последовательность случайных точек

Пусть из общего числа случайных точек точек принадлежат объёму , тогда имеет место приближенная формула

(3.6)

2. Практическая часть

2.1 Пример 1

Вычислим приближенно интеграл

Точное значение его известно:

Используем для вычисления две различные случайные величины , с постоянной плотностью (т.е. равномерна распределена в интервале ) и с линейной плотностью .Линейная плотность более соответствует рекомендации о пропорциональности и . Поэтому следует ожидать, что второй способ вычисления даст лучший результат.

1) Пусть , формула для разыгрывания имеет вид . А формула (2.2) примет вид .

Пусть . В качестве значений используем тройки чисел из табл. 1 (см. приложение), умноженные на 0.001. Промежуточные результаты сведены в табл. 2.1. Результат расчёта

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы