Сущность метода Монте-Карло и моделирование случайных величин
Разыгрывать значение можно следующим образом:
1) выбираются два значения и случайной величины и строится случайная точка ight=21 src="images/referats/7462/image088.png">с координатами
2) если точка лежит под кривой , то полагаем , если же точка лежит над кривой , то пара отбрасывается и выбирается новое значение.
1.2 Вычисление интегралов
Рассмотрим функцию , заданную на интервале , требуется приближенно вычислить интеграл
(2.1)
Этот интеграл может быть несобственным, но абсолютно сходящимся.
Выберем произвольную плотность распределения , определённую на интервале . Наряду со случайной величиной , определённой в интервале с плотностью , необходимо определить случайную величину
Согласно соотношению получим
Рассмотрим теперь одинаковых независимых случайных величин и применим к их сумме центральную предельную теорему. Формула (1.7) в этом случае запишется так:
Последнее соотношение означает, что если выбирать значений , то при достаточно большом
(2.2)
Оно показывает также, что с очень большой вероятностью погрешность приближения (2.2) не превосходит .
Для расчёта интеграла (2.1) можно использовать любую случайную величину . Определённую в интервале с плотностью . В любом случае . Однако дисперсия , а с ней и оценка погрешности формулы (2.2) зависят от того, какая величина используется, так как
(2.3)
Докажем, что это выражение будет минимальным тогда, когда пропорциональна .
Для этого воспользуемся неравенством
, в которым положим , . Получим неравенство
(2.4)
Из (2.3), (2.4) следует, что
(2.5)
Остается доказать, что нижняя граница дисперсии (2.5) реализуется при выборе плотности . Так как
.
Следовательно,
,
и правая часть (2.3) обращается в правую часть (2.5)
Использовать плотность для расчёта практически невозможно, так как для этого нужно знать значение интеграла . А его вычисление представляет собой задачу, равноценную задаче о вычислении интеграла (2.1). Поэтому ограничиваются следующей рекомендацией: желательно, чтобы плотность была пропорциональна .
Конечно, выбирать очень сложные нельзя, так как процедуры разыгрывания станет очень трудоёмкой. Оценку (2.2) с плотностью , сходной , называют существенной выборкой.
Также если стоит задача вычислить интеграл (2.1), преобразуем его к виду
(2.6)
Если теперь обозначить (2.7)
То интеграл принимает вид
(2.8)
и может быть вычислен при помощи метода статистических испытаний.
В частном случае, если и конечны или их можно считать конечными приближенно, в качестве целесообразно выбрать равномерный закон распределения.
Как известно, плотность вероятности равномерного закона распределения в интервале равна:
(2.9)
Подставим в интеграл (2.6) значение из формулы (2.9) и получим:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах