Предельные точки
Мы получили бы последовательность точек , . Но по условию замкнуто, и потому. Мы получили противоречие с тем, что предполагалось, что .
Обратно, если — открытое множество, то — замкнутое множество.
В самом деле, если бы это было не так, то нашлась бы последовательность точек ,и . Но — открытое множество, и можно покрыть шаром с центром в ней, полностью принадлежащим . Получилось противоречие с тем, что любой такой шар содержит точки .
Пример 3. Пусть — непрерывная функция. 1) множество замкнуто, а открыто. 2) множество замкнуто, а открыто.
Если задано произвольное непустое множество , отличное от , то можно представить в виде суммы трех непересекающихся попарно множеств:
,
где — совокупность внутренних точек — это открытое ядро , — совокупность внутренних точек — это открытое ядро , — совокупность точек, каждая из которых не есть внутренняя для , но и не есть внутренняя для . Такие точки называются граничными точками , а называется границей ; открыто, открыто, +тоже открыто, =замкнуто.
Таким образом, граница есть замкнутое множество.
Любую граничную точку множества можно определить как такую точку , что любой шар с центром в ней содержит как точки , так и точки . Сама точка может принадлежать и не принадлежать .
Пустое множество считается одновременно замкнутым и открытым.
Любое из множеств , входящих в теоретико-множественную сумму (1), может оказаться пустым.
Пример 4. Пусть ; тогда , — открытое ядро, — открытое ядро ,— граница (не принадлежит ).
Пример 5. — множество точек с рациональными координатами. — открытое ядро — пустое множество, — открытое ядро — пустое множество, — граница .
В следующих двух теоремах устанавливаются основные свойства замкнутых множеств. При этом рассматриваются множества, содержащиеся в одном и том же метрическом пространстве .
Теорема 1. Сумма конечного числа замкнутых множеств также – замкнутое множество.
Доказательство. Так как сумму любого конечного числа множеств можно образовать последовательным прибавлением по одному множеству, то достаточно доказать теорему для суммы двух множеств.
Пусть и - замкнутые множества, и . В последовательности существует бесконечная частичная последовательность , состоящая целиком из точек одного из данных множеств, например . Но тоже стремится к , и так как замкнуто, то , а потому .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах