Закономерность распределения простых чисел в ряду натуральных чисел
Простые числа? – Это просто!?
Узнав о важной роли простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании и о том, что нужна закономерность распределения ПЧ в ряду натуральных чисел, не являясь математиком, всё же рискнул заняться решением этой задачи. Результат ниже.
Для начала выписал ряд ПЧ. Конечно же, это было сделано с целью заметить,
хоть какую бы, закономерность. С этой же целью были вычислены разности между соседними числами ряда ПЧ. Было замечено, что иногда появлялась последовательность разностей 6-4-2-4-2-4-6-2. Там, где эта последовательность нарушалась, были введены составныё числа (СЧ). Результат представлен в таблице 1, СЧ в которой подчёркнуты. Числа 2, 3, 5, являясь ПЧ, из рассмотрения всё же были убраны. Это первое исключение из правил. Вторая вольность заключалась введением в рассмотрение числа 1, зная, что единица не является простым числом.
Целью же было найти закономерность среди ПЧ + СЧ, а потом уже найти закономерность среди ПЧ. Стратегия поиска закономерности ПЧ заключалась в следующей логической формуле:
(закономерность ПЧ+СЧ) – (закономерность СЧ) = закономерность ПЧ.
Из ПЧ + СЧ, представленных в таблице 1, была составлена система из восьми арифметических прогрессий. Результат представлен в таблице 2.
Разности всех восьми прогрессий равны 30 и их первые члены равны соответственно 1, 7, 11, 13, 17, 19, 23, 29, а сами ряды обозначены через R1, R7,R11, R13, R17, R19, R23, R29. СЧ, как и в таблице 1, подчёркнуты и сверху расписаны в виде произведений двух чисел. Можно сформулировать правило, по которому в любой из восьми арифметических прогрессий распределены СЧ.
Если в арифметической прогрессии, какой – либо член an можно представить в виде двух сомножителей fxp, то последующие члены этой прогрессии an+mf являются произведением fx(p+md), а члены an+kp произведением px(f+kd), где m и k любые натуральные
числа, а d – разность этой прогрессии.
Данное правило не нуждается в доказательстве, т. к. фактически следует из определения арифметической прогрессии. Но для обеспечения закономерности ПЧ имеет большое значение. Во - первых, оно запрещает поиск рядов ПЧ, подчиняющихся одной арифметической прогрессии, т. к. любое простое число an можно представить в виде anх1, и тогда в любом ряде через число членов an, появляется составное число anх(1+d).
Во – вторых, в любой арифметической прогрессии появление дополнительных составных чисел возможно только в сочетании с разностью именно этой прогрессии.
Это правило можно сформулировать для любого числа сомножителей, но в данном случае интерес представляет число сомножителей равное двум.
В качестве примера рассмотрим в ряде R1 четвёртый член равный 91=7х13. Ближайшим членом в ряде R1 кратным семи является число 301, отстоящее от числа 91 на семь номеров, соответственно, число 301 принадлежит ряду СЧ. Число 301 является произведением 7х43 (301=7х43), и с номера этого числа равного 11, каждое сорок третье число, тоже делится на 43 и, соответственно, принадлежит к ряду СЧ. Дальше это можно не описывать, т. к. это хорошо видно в таблице 2.
Расписав таблицу 2 в виде математических символов, удалось получить систему из восьми формул, расписанных в виде разности сумм, см. таблицу 3. Во всех восьми формулах системы, члены с рядами двойных сумм служат фильтрами, удаляющими СЧ из ряда ПЧ+СЧ, и задают работу фильтров в виде матриц.
В таблице 4 изображено распределение номеров СЧ в ряде R1, определяемых вторым членом формулы. Это матрица, в которой и по столбцам и по строкам арифметические прогрессии.
В формулах индексы и обозначают столбцы и строки подобных матриц, сами же и дополнительными индексами не отягощаю. Без и описать работу матриц не смог, а формальная фраза, что в выражениипод суммой произведений подразумеваются всевозможные их комбинации в зависимости от значений a1 и с1, будет неверна. Ибо все члены с номерами при >1 и >1 из формулы выпадают.
Система формул арифметических прогрессий, позволяющая вычислять ПЧ, получилась достаточно громоздкой, но закономерность обозначена.
Данная статья была подготовлена для публикации в научном журнале с математическим уклоном. Пока шёл поиск данного журнала, путём несложных умозаключений, была составлена система рядов арифметических прогрессий с разностью 10. Результат в таблице 5 и 6. Всё было расписано по образцу и подобию предыдущего материала. В таблице 7 изображена матрица для номеров второго члена формулы 1 таблицы 6.
Не начав переписывать статью заново, в связи с открытием новой системы уравнений, опять же путём размышлений, были расписаны арифметические прогрессии с разностью 2 и 1, т.е. при разности единица ПЧ были напрямую увязаны с натуральным рядом. Результат в таблице 8 и 9.
Всё расписано, как и в случаях с системами уравнений арифметических прогрессий разностей 30 и 10. И после этого наступил момент истины.
Оказалось, что подобных уравнений можно составить бесконечное множество. Навскидку – это арифметические прогрессии с разностью 1, 2, 4, 6, 10, 12, 18, 20, 30, 36, 60, и т.д. Даже в перечисленном до разности 60 указаны не все.
Обобщающий вывод:
ПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающий ряды ПЧ+СЧ.
1 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
49 |
53 |
59 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
61 |
67 |
71 |
73 |
77 |
79 |
83 |
89 |
91 |
97 |
101 |
103 |
107 |
109 |
113 |
119 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
121 |
127 |
131 |
133 |
137 |
139 |
143 |
149 |
151 |
157 |
161 |
163 |
167 |
169 |
173 |
179 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
181 |
187 |
191 |
193 |
197 |
199 |
203 |
209 |
211 |
217 |
221 |
223 |
227 |
229 |
233 |
239 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
241 |
247 |
251 |
253 |
257 |
259 |
263 |
269 |
271 |
277 |
281 |
283 |
287 |
289 |
293 |
299 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
301 |
307 |
311 |
313 |
317 |
319 |
323 |
329 |
331 |
337 |
341 |
343 |
347 |
349 |
353 |
359 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
361 |
367 |
371 |
373 |
377 |
379 |
383 |
389 |
391 |
397 |
401 |
403 |
407 |
409 |
413 |
419 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
421 |
427 |
431 |
433 |
437 |
439 |
443 |
449 |
451 |
457 |
461 |
463 |
467 |
469 |
473 |
479 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
481 |
487 |
491 |
493 |
497 |
499 |
503 |
509 |
511 |
517 |
521 |
523 |
527 |
529 |
533 |
539 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
541 |
547 |
551 |
553 |
557 |
559 |
563 |
569 |
571 |
577 |
581 |
583 |
587 |
589 |
593 |
599 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
601 |
607 |
611 |
613 |
617 |
619 |
623 |
629 |
631 |
637 |
641 |
643 |
647 |
649 |
653 |
659 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
661 |
667 |
671 |
673 |
677 |
679 |
683 |
689 |
691 |
697 |
701 |
703 |
707 |
709 |
713 |
719 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 | ||||||||||||||||
721 |
727 |
731 |
733 |
737 |
739 |
743 |
749 |
751 |
757 |
761 |
763 |
767 |
769 |
773 |
779 | ||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах