Плоские кривые
Строим осевой прямоугольник со сторонами a и b, изображаем эллипс.
II. Строим множество точек, заданных неравенством (2). Для этого изображаем прямую у = 3 и штрихуем определяемую область.
III. Рассуждаем аналогично.
Построение.
Заняти
е №4–5
Тема: Гипербола
Учащиеся хорошо знакомы с гиперболой как с графиком функции и с такими понятиями, как её ветви и асимптоты. Гипербола не только является центрально-симметричной линией (как график нечётной функции), но и имеет две оси симметрии – это биссектрисы пар вертикальных координатных углов (рис. 19).
Рассмотрим уравнение x2 – y2 = l и покажем, что линия, задаваемая им – это тоже гипербола. Перепишем уравнение в виде (x – y) (x + y) = l. Введём новые переменные: тогда в системе (u, v) исходное уравнение примет вид uv = l, и это будет гипербола, расположение ветвей которой полностью определяется знаком числа l.
Для изображения гиперболы выясним, как расположены оси системы координат (u, v) в координатной плоскости (х, у), считая, что u – абсцисса и v – ордината в новой системе координат. Ось абсцисс – это множество точек, для которых v = 0, т.е. в исходной системе координат, или в исходной системе координат, или
. Это биссектриса чётных координат углов. Аналогично,
. Это биссектриса нечётных координатных углов. Для выяснения направлений на осях рассмотрим на оси Ou точку А (рис. 20), которая в системе координат (х, у) имеет координаты (1, -1). Тогда для этой точки u = 1 – (– 1) = 2 > 0, т.е. она лежит на положительной полуоси Оu. Аналогично, рассматривая на оси Ov точку В (1; – 1), получим, что для неё
, и, значит, она расположена на положительной полуоси Ov.
Это позволяет сделать вывод о том, что преобразование переводит систему координат (х, у) в систему (u, v), оси которой повёрнуты пол отношению к исходной на угол
.
Рис. 19
Рис. 20
Рис. 21
Уравнение при этом преобразуется в уравнение uv = l, которое равносильно уравнению ибо
равенство означало бы
, и, значит,
В зависимости от знака числа l мы можем изобразить ветви гиперболы в соответствующих координатных четвертях системы
, тем самым будет получено изображение гиперболы, задаваемой уравнением
в системе координат
.
При этом, подставляя в исходное уравнение или
в зависимости от знака l, мы получим точки пересечения гиперболы с той или иной координатной осью. Эти точки называются вершинами гиперболы (рис. 21).
Если к гиперболе провести касательные в её вершинах (Теорема. Касательная к гиперболе в произвольной её точке является биссектрисой внутреннего угла М0 треугольника F1M0F2, имеющего своими вершинами фокусы гиперболы и данную точку М0, см. рис. 27), то они пересекут асимптоты гиперболы в точках, которые будут вершинами квадрата (это следует из соображений симметрии). Удобно этот квадрат назвать осевым квадратом гиперболы (рис. 23). Центр этого квадрата совпадает с центром симметрии гиперболы, её диагонали – это её асимптоты, а сторона равна
.
Рис. 22, 23
Если произвести сжатие к оси Ох с коэффициентом k > 0, k ¹ 1, то гипербола преобразуется в линию, также называемую гиперболой, но о такой гиперболе говорят, что она неравнобокая. Исходную же гиперболу называют равнобокой. Прн сжатии осевой квадрат преобразуется в осевой прямоугольник, а диагонали квадрата – в диагонали прямоугольника (они будут асимптотами для получающейся неравнобокой гиперболы). Уравнение неравнобокой гиперболы имеет вид: , где k2 ¹ 1.
Рис. 24
Таким образом, уравнение (k ¹ 0, l ¹ 0) всегда задаёт гиперболу. Она равнобокая, если k = 1 и неравнобокая, если k = -1. Её вершины лежат на оси Ох, если l > 0, и на оси Оу, если l < 0. Для её изображения нужно сначала построить осевой прямоугольник, его диагонали и вершины гиперболы (рис. 24).
Преобразуем уравнение . Разделим обе его части на l:
(1)
Если l > 0, то уравнение примет вид (1), а если
l < 0 – (2).
Сделаем замену ,
, тогда получим уравнение гиперболы в общем виде
(3)
(4).
Уравнения (3) и (4) называются каноническими уравнениями, а гиперболы, заданные этими уравнениями, называются сопряжёнными, а и b – стороны осевого прямоугольника. Если a = b – осевого квадрата.
Для закрепления решим несколько задач. [17]
1) Построить графики.
а)
I способ.
Это уравнение равносильно уравнению . Поскольку l < 0, то вершины гиперболы расположены на оси Оу. Гипербола неравнобокая, т. к.
. Строим осевой прямоугольник со сторонами
и
, где
,
. Чертим график гиперболы.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах