Плоские кривые
Вокруг эллипса естественным образом описывается прямоугольник со сторонами, равными осям эллипса и параллельными координатным прямым, который является результатом сжатия квадрата, описанного вокруг исходной окружности. Называется он осевым прямоугольником эллипса. Если научиться его строить по уравнению эллипса, то довольно легко после этого изобразить и сам эллипс.
1) Например, дано уравне
ние а) 3х2 + у2 = 7. Изобразить эллипс двумя способами. [16]
I способ
Запишем его в виде . Устанавливаем, что
, строим осевой прямоугольник со сторонами 2R, l и изображаем сам эллипс (рис. 17). Отметим, что в правой части уравнения должно быть положительное число, а в левой – сумма квадрата абсциссы, взятого с положительным коэффициентом, и квадрата ординаты.
Рис. 17
II способ
Приведём уравнение к каноническому виду.
Разделим обе его части на 7.
Получим, что
Строим осевой прямоугольник со сторонами а и 2b, а затем изображаем эллипс.
Отметим, что, например, уравнение 3х2 + 5у2 = 7 следует сначала преобразовать к виду х2 + у2 = или
а затем находить R, k и a, b соответственно.
Если центр эллипса находится не в начале координат, но его оси параллельны координатным осям, то он задаётся уравнением (4),
где С (а; b) – центр эллипса. Это легко следует из формул параллельного переноса, или каноническим уравнением
(5) – С (х; у) – центр эллипса.
Данного материала достаточно для построения эллипса в том случае, если он задан уравнением, содержащем как квадраты, так и первые степени переменных.
б)
I способ
Преобразуем к виду (4):
Это уравнение эллипса с центром в точке С (5; – 4), где k = (рис. 18)
Рис. 18
II способ
Преобразуем к виду (5): . Получили уравнение эллипса с центром в точке С (5; – 4), где а = 3, b = 2.
Строим сам эллипс.
2. Найти длины полуосей и координаты фокусов следующих эллипсов:
а)
Приводим уравнение к каноническому виду , а = 3, b = 2.
Фокусы F1 и F2 имеют координаты F1(с; 0) и F2(– с; 0).
Итак, F1(; 0) и F2(
; 0) а = 3, b = 2.
б) Решаем аналогично а).
, а = 3, b = 1.
F1(с; 0), F2(– с; 0).
Итак, F1(; 0) и F2(
; 0) а = 3, b = 1.
в)
, а =
, b =
.
F1(с; 0), F2(– с; 0):
Итак, а = , b =
, F1(
; 0), F2(-
; 0).
3. Найти координаты точек М, принадлежащих эллипсу и равноудалённых от фокусов.
Пусть М (х; у), тогда МF1 = МF2 (по условию). Т. к. F1(с; 0), F2(– с; 0): то
Если х = 0, то, подставляя его в исходное уравнение, получим: ,
Следовательно,
и
.
4. Взяв на плоскости прямоугольную декартову систему координат, изобразить области, определяемые следующими системами неравенств.
а)
Построим множество точек, определяемых 1-м, 2-м, 3-м неравенством.
Найдём пересечение этих множеств.
I. Построим эллипс но т. к. неравенство строгое, то точки эллипса не принадлежат искомой области, т.е. неравенство (2) задаёт внутренние точки эллипса.
Устанавливаем, что R = 3, (0< k <1),
Cтроим осевой прямоугольник со сторонами
и изображаем эллипс.
II. Строим множество точек, заданных вторым неравенством. Для этого строим прямую и штрихуем определяемую область.
III. Аналогичные рассуждения для построения области, заданной неравенством у + 2 > 0.
Построение.
б)
Построим множество точек, определяемых 1-м, 2-м, и 3-м неравенствами.
Найдём пересечение этих множеств.
I. – эллипс, точки которого не принадлежат искомой области (неравенство строгое), т.е. неравенство задаёт внешние точки эллипса. Приведём уравнение к каноническому виду
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах