Перпендикулярность геометрических элементов
Проводим в плоскости горизонталь h и фронталь v (рис. 73).
Далее из точки М, взятой на прямой , опускаем перпендикуляр n, пользуясь рассмотренным выше положением: n' ^ h'; n'' ^ v'', т.е. горизонтальная проекция перпендикуляра будет перпендикулярна горизонтальной проекции горизонтали, а фронтальная его проекция — перп
ендикулярна фронтальной проекции фронтали (рис. 73).
Плоскость (Ç n), проходящая через прямую n, будет перпендикулярна к плоскости .
6.5 Перпендикулярные прямые
Две прямые перпендикулярны в том и только в том случае, если через каждую из них можно провести плоскость, перпендикулярную к другой прямой.
На рис. 74 изображена прямая общего положения, к которой требуется провести перпендикулярную прямую.
Рис. 74
Через точку А прямой строим перпендикулярную к ней плоскость (h Ç v) (рис. 71):
' ^ h';
'' ^ h''.
Любая прямая, лежащая в плоскости будет также перпендикулярна к данной прямой . Поэтому проведем в этой плоскости произвольную прямую t, на которой возьмем произвольную точку, например, точку В (рис. 74).
Соединив точки А и В, лежащие в плоскости, получим прямую n, перпендикулярную к данной прямой (рис. 74).
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах