Методы отсечения
Обозначим через N совокупность небазисных переменных и на основании последней симплексной таблицы запишем разложение xi по небазисным переменным xi, jÎN
(16)
Так как xi – нецелая величина, обозначим ближайшее целое число, не превосходящее xi, через [xi] и определим дробную часть: {xi}= xi - [xi]. Очевидно, (xi)>
0.
Покажем, что по i-и строке симплексной таблицы (£, C) – задачи (в которой стоит нецелая координата решения) можно определить дополнительное линейное ограничение, обладающее свойствами правильности.
Теорема. Пусть - допустимое решение (£ц, C) – задачи, тогда соотношения
, (17)
, - целое,
определяют правильное отсечение.
Доказательство.
Запишем выражение (16) в виде:
Используя для этого выражения формулу (17), получим:
или
На основании предположений теоремы о допустимости решения
(£ц, C) – задачи xi – целое. Величины [xio], - целые по определению, следовательно, zi – тоже целое.
Итак, zi определенное формулой (17), целое. Докажем что . Доказательство будем вести от противного. Пусть .-
Это значит, что . По определению дробной части . По условию теоремы x – допустимое решение (£ц, C) – задачи, поэтому . Следовательно,
Тогда должно выполняться:
Итак, из предположения отрицательности zi, сразу же получаем т.е. zi – нецелое. Поскольку ранее было показано, что zi, определенное формулой (17), является целым, то тем самым мы пришли к противоречию. Следовательно, предположение, что zi < 0, неверное. Теорема доказана.
Следствие. Любое оптимальное решение x(£, C) (£, C) – задачи, не являющееся допустимым решением (£ц, C) – задачи, неудовлетворяет условию правильного отсечения (17).
Доказательство. Пусть х (£, C) – оптимальное решение (£, C) – задачи, xi0 – дробное.
Покажем, что х (£, C) не удовлетворяет условию отсечения. Поскольку план оптимален, все небазисные переменные xi, для jÎN равны нулю. Поэтому . Учитывая это, подставим xio в формулу (17):
zi(x (£, C))= – {xi0}+0<0,
что противоречит условию неотрицательности zi. Следствие доказано.
Очевидно, что количество дополнительных ограничений будет нарастать по мере решения вспомогательных (£, C) – задач, оптимальные планы которых будут содержать нецелые координаты, т.е. возникает проблема размерности.
Р. Гомори предложил прием, позволяющий ограничить размеры рассматриваемых симплексных таблиц вспомогательных задач величиной (n+2) (k+1), где n – количество переменных (£, C) – задачи, k – число небазисных переменных ее. Этот прием основывается на том, что нас интересует дополнительное ограничение лишь как способ отсечения нецелочисленного оптимального решения вспомогательной задачи, полученной на данном шаге, и перехода к следующей задаче.
Последовательность (£, C) – задач пометим индексом k=0,1,…, соответствующим номеру итерации в последовательном приближении к решению исходной (£ц, C) – задачи, и обозначим (£k, C). При этом (£0, C) – задача соответствует (£, C) – задаче (задаче без требования целочисленности).
Переменную zi, которая определяется дополнительным линейным ограничением (7) и строится по некоторой нецелочисленной координате оптимального решения (£k, C) – задачи (k =0, 1, 2,…) обозначим xn+k+l.
Чтобы размерность последовательности (£k, C) – задач не возрастала, вычеркнем из симплекс-таблицы переменную, по которой построено дополнительное линейное ограничение.
После сделанных замечаний перейдем непосредственно к изложению вычислительной схемы.
1. Решим (£k, C) – задачу (вначале k = 0) методом последовательного улучшения плана.
Пусть в базис оптимального решения вошли векторы As1,…, Asm. Параметры последней симплексной таблицы обозначим через xij:
.
Если, все базисные составляющие оптимального решения x(£k, C) (£k, C) – задачи целые, то x(£k, C) = x(£ц, C). Если некоторая координата xio оптимального решения x(£k, C) нецелая, то перейдем к п. 2.
2. Если среди совокупности координат оптимального решения x(£k, C) имеется единственная нецелая координата, то дополнительное линейное ограничение (17) строится по этой координате. Если нецелых координат в x(£k, C) более одной, то выберем координату с наименьшим номером. Пусть ею оказалась xi0. Составим дополнительное линейное ограничение
(18)
(19)
3. Добавим условия (18, 19) к условиям (£k, C) – задачи. Получим новую (£k+1, C) – задачу. Так как оптимальное решение x(£k, C) (£k, C) – задачи определяло одну из вершин многогранника условий, то оно может быть выбрано в качестве первоначального опорного решения для вновь полученной задачи. А это означает, что последнюю симплексную таблицу (£k, C) – задачи можно взять в качестве исходной для (£k+1, C) – задачи, дополнив ее условием (18).
Итак, симплексная таблица для (£k+1, C) – задачи получается из последней симплексной таблицы для (£k, C) – задачи путем окаймления (i+1) – й строкой с элементами:
где – небазисные переменные (£k, C) задачи.
Получим новую задачу, переменными которой являются . Условия этой задачи разрешены относительно xsl,…, xsm переменных и новой переменной xn+k+1, а линейная форма выражена через небазисные переменные (£k, C) – задачи. Так как мы занимаемся максимизацией F(x) и решение х* для (£k, C) – задачи оптимально, то все Di > 0. Поэтому процесс перехода к новому решению (£k+1, C) – задачи не может быть осуществлен по методу уточнения плана. В то же время и поэтому вектор А0 симплексной таблицы не является опорным решением для (£k+1, C) – задачи, так как решением называется вектор, все координаты которого неотрицательны и удовлетворяют условию принадлежности области £k+l. Поэтому назовем полученный вектор псевдорешением задачи (£k+1, C) и перейдем к дальнейшему преобразованию симплекс-таблицы.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах