Методы отсечения

Построенный нами пример показал, что для решения задач с требованием целочисленности необходимо рассмотреть особые методы оптимизации; и, кроме того, мы видим, что оптимальное решение задач целочисленного программирования не обязательно принадлежит границе многогранника (многоугольника) условий, что было характерно для задач линейного программирования.

2. Теоретические основ

ы методов отсечения

Запишем общую задачу целочисленного программирования: в области, определенной условиями

(11)

(12)

- целые, (13)

максимизировать функцию

(14)

Назовем для кратности задачу (11–14) (£ц, C) – задачей. Соответствующую ей задачу без требования целочисленности переменных, т.е. задачу (11, 12, 14) назовем (£, C) – задачей. Поставим вопрос: нельзя ли решение (£ц, C) – задачи получить путем решения некоторой специальным образом построенной задачи без требования целочисленности переменных и такой, что оптимальные решения исходной (£ц, C) – задачи и задачи без требований целочисленности переменных будут совпадать. Другими словами: нельзя ли хорошо изученный аппарат решения задач линейного программирования приспособить к решению целочисленных задач. Принципиальный ответ на этот вопрос дает следующая теорема.

Теорема. Пусть £ – многогранник, £ц – множество его целых точек, R – выпуклая, линейная оболочка множества £ц, тогда:

1) R=Rц – целочисленный многогранник;

2) Rц = £ц;

3) R* – множество опорных решений задачи (£ц, C) содержится в многограннике Rц.

Доказательство. Докажем, что R – целочисленный многогранник. По условию теоремы £ – многогранник, поэтому множество его целых точек (оно обозначено через £ц) конечно. Поскольку R – выпуклая линейная оболочка этого конечного множества точек, R – тоже многогранник.

По самому определению выпуклой линейной оболочки, она содержит все опорные планы множества, на которое она натянута, т.е. многогранник R содержит все целочисленные точки £ц. Поэтому R – целочисленный многогранник. Обозначим его через Rц. Первая часть теоремы доказана.

Докажем, что Rц совпадает с £ц. Так как R – выпуклая оболочка точек множества £ц, то £ц ÍRц.

Покажем, что справедливо также и противоположное неравенство–включение, т.е. RцÍ£ц. Для этого выберем некоторый произвольный элемент х°ÎRц. Поскольку Rц содержит все опорные решения задачи (£ц, C), то х° удовлетворяет условиям задачи (£ц, C), т.е. х°Î£ц. Но поскольку произвольный элемент из Rц принадлежит £ц, то очевидно, что справедливоRцÍ£ц. Сопоставляя противоположные включения RцÍ£ц и £цÍRц приходим к выводу: что £ц=Rц. Вторая часть теоремы также доказана.

Доказательство 3-го пункта теоремы является совершенно очевидным. Так как R* – множество опорных решений задачи (£ц, C), то R*Í£ц но £ц=Rц, поэтому R*ÍRц

Теорема доказана.

Следствием из этой теоремы является тот вывод, что оптимальное решение задачи, областью определения которой является выпуклая оболочка, натянутая на область поиска целочисленного решения, совпадает с оптимальным решением исходной целочисленной задачи.

Доказанная теорема и следствие из нее показывают принципиальную возможность замены решения задачи типа (£ц, C) некоторой процедурой построения и решения вспомогательной задачи типа (£, C), однако не дают алгоритма решений. К тому же построение выпуклой оболочки множества £ц реальных задач – чрезвычайно сложная, а подчас практически неразрешимая задача,

В 1954 г. Дж. Данциг высказал идею о том, что построение выпуклой оболочки целочисленной области для задачи (£ц, C) можно осуществлять поэтапно и решать получаемые при этом задачи. Однако при этом возникли вопросы как строить ограничения новой задачи и как обеспечить конечность процесса.

Ответ на эти вопросы был впервые получен Р. Гомори, который предложил алгоритмы решения целочисленных и. частично целочисленных задач.

Алгоритм Р. Гомори состоит из следующих процедур:

1. Решается (£, C) – задача, соответствующая исходной (£ц, C) – задаче.

2. Полученное оптимальное решение (£, C) – задачи, если оно существует, проверяется на целочисленность. Если условие целочисленности выполняется по всем переменным, то оптимальное решение (£, C) – задачи есть оптимальное решение (£ц, C) – задачи. Если условие целочисленности не выполняется хотя бы по одной координате, то переходят к третьему этапу. Если (£, C) – задача, оказывается неразрешимой, то (£ц, C) – задача тоже решения не имеет.

3. Строится дополнительное ограничение, обладающее тем свойством, что с его помощью отсекается часть области, в которой содержится оптимальное решение (£, C) – задачи и не содержится ни одного допустимого решения (£ц, C) – задачи. Процесс построения дополнительных ограничений и решения получаемых при этом (£, C) – задач продолжается до тех пор, пока не получим целочисленного решения или не убедимся в неразрешимости задачи.

При этом свойства, которыми должно обладать каждое из дополнительных ограничений при переходе от одной задачи к другой следующие:

1) дополнительное ограничение должно быть линейным, чтобы оставаться в области применимости аппарата линейного программирования;

2) дополнительное ограничение должно отсекать часть области, в которой не содержится допустимых решений целочисленной (£ц, C) – задачи, но есть найденное оптимальное решение нецелочисленной (£, C) – задачи, т.е. ограничение должно обладать свойством правильности, которое не позволяет потерять оптимальное решение исходной (£ц, C) – задачи.

Пусть х (£, C) – оптимальное решение (£, C) – задачи, которое является недопустимым решением для (£ц, C) – задачи. Неравенство

(15)

определяет правильное отсечение, если удовлетворяет

а) условию отсечения: x(£, C) удовлетворяет неравенству (15)

б) условию правильности: любое допустимое решение задачи (£ц, C), удовлетворяет неравенству (15).

Методы, основанные на использовании процедуры построения правильных отсечений, получили название методов отсечения.

3. Первый алгоритм Гомори

Следуя общей схеме методов отсечения, решим (£, C) – задачу (11, 12, 14), соответствующую (£ц, C) – задаче (11–14). Пусть x(£, C) – ее оптимальное решение. Проанализируем координаты x(£, C) на целочисленность. Если все координаты вектора x(£, C) целые, то x(£, C) = x(£ц, C). Если хотя бы одна координата, пусть xi, будет нецелой, поступим следующим образом.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы