Методика регрессионного анализа
Модель для ПФЭ типа выглядит следующим образом:
Коэффициенты уравнения регрессии по методу наименьших квадратов в матричной форме определяем следующим образом [1, с. 53-55]:
idth=104 height=146 src="images/referats/11770/image005.png">
Выражение - квадратная симметричная матрица – называется матрицей системы нормальных уравнений, или информационной матрицей (матрицей Фишера); – ковариационная матрица, или матрица дисперсий ковариаций.
Ковариация показывает величину статистической взаимосвязи между эффектами модели xi и xj:
Также коэффициенты ковариаций можно определить из ковариационной матрицы:
Из матрицы видно, что коэффициенты ковариаций каждого эффекта с каждым равны нулю, отсюда делаем вывод, что коэффициенты уравнения регрессии не коррелированны между собой.
Проверка многофакторных статистических моделей по основными критериям качества
Проверка на статистическую значимость получаемой математической модели [1, с. 93-94]
Проводиться проверка статистической гипотезы о силе влияния факторов плана эксперимента на фоне случайной изменчивости повторных опытов:
Где – среднее значения результатов опытов в u-той строке матрицы результатов; – среднее значение по всем результатам опытов; - результат в u-той строке l-го повторного опыта; (n – количество повторных опытов (2))
По таблице (приложение 3) определяем 3,73
Поскольку (53,935>3,73), то делаем положительный вывод о целесообразности получения математической модели.
Проверки предпосылок о свойствах случайных ошибок входящие в результаты экспериментов [1, с. 93]
При равномерном дублировании опытов nu = n = const (в нашем случае n = 2). Проверка однородности ряда дисперсий производиться с использованием G-критерия Кохрена:
- вычисляется по формуле:
Число степеней свободы, которыми обладает каждая из дисперсий: n – 1 = 1;
Количество независимых оценок дисперсий: N = 8
По указанным индексам находим значение из таблицы "Критерий Кохрена" (приложение 1)
Так как то делаем вывод, что дисперсии однородны и могут быть усреднены:
Проверка на адекватность полученной модели произвольным результатам экспериментов в пределах принятых изменений факторов [1, с. 94-95]
Проверка коэффициентов уравнения регрессии на статистическую значимость проводиться с помощью t-критерия:
Для значения α = 0,05, получим α/2 = 0,025 и значение t-критерия Стьюдента равно . Поскольку в матрице дисперсий-ковариаций не нулевые только диагональные элементы и равны между собой (), то все доверительные интервалы равны между собой:
Теперь проверим все коэффициенты на статистическую значимость исходя из условия: если – то коэффициент статистически значим, если – то коэффициент статистически не значим.
коэффициент |
b0 |
b1 |
b2 |
b3 |
b4 |
b5 |
b6 |
b7 |
|
36,542 |
23,292 |
13,625 |
10,458 |
1,375 |
2,375 |
5,208 |
1,875 |
Статистически значим |
+ |
+ |
+ |
+ |
- |
+ |
+ |
- |
Таким образом мы получили, что коэффициенты b4 и b7 – статически не значимы, поэтому мы не будем вносить их в нашу модель. И окончательный вид модели будет таким:
Число = 6 – количество эффектов, которые вошли в структуру модели, то есть статистически значимые.
Значения откликов, полученных с помощью последней модели:
Отклик |
y1 |
y2 |
y3 |
y4 |
y5 |
y6 |
y7 |
y8 |
|
-3.25 |
38.584 |
13.584 |
55.418 |
2.5 |
53.834 |
40.166 |
91.5 |
|
3.25 |
3.251 |
3.251 |
3.249 |
0.5 |
0.499 |
0.501 |
0.5 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах