Методика регрессионного анализа

Модель для ПФЭ типа выглядит следующим образом:

Коэффициенты уравнения регрессии по методу наименьших квадратов в матричной форме определяем следующим образом [1, с. 53-55]:

idth=104 height=146 src="images/referats/11770/image005.png">

Выражение - квадратная симметричная матрица – называется матрицей системы нормальных уравнений, или информационной матрицей (матрицей Фишера); – ковариационная матрица, или матрица дисперсий ковариаций.

Ковариация показывает величину статистической взаимосвязи между эффектами модели xi и xj:

Также коэффициенты ковариаций можно определить из ковариационной матрицы:

Из матрицы видно, что коэффициенты ковариаций каждого эффекта с каждым равны нулю, отсюда делаем вывод, что коэффициенты уравнения регрессии не коррелированны между собой.

Проверка многофакторных статистических моделей по основными критериям качества

Проверка на статистическую значимость получаемой математической модели [1, с. 93-94]

Проводиться проверка статистической гипотезы о силе влияния факторов плана эксперимента на фоне случайной изменчивости повторных опытов:

Где – среднее значения результатов опытов в u-той строке матрицы результатов; – среднее значение по всем результатам опытов; - результат в u-той строке l-го повторного опыта; (n – количество повторных опытов (2))

По таблице (приложение 3) определяем 3,73

Поскольку (53,935>3,73), то делаем положительный вывод о целесообразности получения математической модели.

Проверки предпосылок о свойствах случайных ошибок входящие в результаты экспериментов [1, с. 93]

При равномерном дублировании опытов nu = n = const (в нашем случае n = 2). Проверка однородности ряда дисперсий производиться с использованием G-критерия Кохрена:

- вычисляется по формуле:

Число степеней свободы, которыми обладает каждая из дисперсий: n – 1 = 1;

Количество независимых оценок дисперсий: N = 8

По указанным индексам находим значение из таблицы "Критерий Кохрена" (приложение 1)

Так как то делаем вывод, что дисперсии однородны и могут быть усреднены:

Проверка на адекватность полученной модели произвольным результатам экспериментов в пределах принятых изменений факторов [1, с. 94-95]

Проверка коэффициентов уравнения регрессии на статистическую значимость проводиться с помощью t-критерия:

Для значения α = 0,05, получим α/2 = 0,025 и значение t-критерия Стьюдента равно . Поскольку в матрице дисперсий-ковариаций не нулевые только диагональные элементы и равны между собой (), то все доверительные интервалы равны между собой:

Теперь проверим все коэффициенты на статистическую значимость исходя из условия: если – то коэффициент статистически значим, если – то коэффициент статистически не значим.

коэффициент

b0

b1

b2

b3

b4

b5

b6

b7

36,542

23,292

13,625

10,458

1,375

2,375

5,208

1,875

Статистически значим

+

+

+

+

-

+

+

-

Таким образом мы получили, что коэффициенты b4 и b7 – статически не значимы, поэтому мы не будем вносить их в нашу модель. И окончательный вид модели будет таким:

Число = 6 – количество эффектов, которые вошли в структуру модели, то есть статистически значимые.

Значения откликов, полученных с помощью последней модели:

Отклик

y1

y2

y3

y4

y5

y6

y7

y8

-3.25

38.584

13.584

55.418

2.5

53.834

40.166

91.5

3.25

3.251

3.251

3.249

0.5

0.499

0.501

0.5

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы