Некоторые понятия высшей матаматики

Высшая математика

Слушатель – Никифоров Михаил Николаевич

Курс 1. АПМ-03. Семестр осенний. 2003 год.

Матрица – совокупность чисел, записанных в виде прямоугольной таблицы.

Минором для элемента аig называется определитель матрицы, полученный из исходной, вычеркиванием i-ой строки и g-ого столбца.

Матрицы с нулевым определителем называются вырожденными или особ

енными. Особенная матрица обратной не имеет. . .

Bpq согласовано с Amn, если число строк В равно числу столбцов А, т.е. p=n. Одно согласование.

1) Если один столбец или одна строка все нули, то | |=0.

2) Если в матрице имеется 2 равных столбца или 2 равных строки, то | |=0.

3) Треугольная матрица. Все элементы выше или ниже главной диагонали =0. Тогда определитель матрицы равен произведению диагональных элементов.

4) При перемене местами 2 строк или 2 столбцов определитель меняет знак.

5) Определитель матрицы, содержащей 2 пропорциональные строки или столбца равен нулю.

6) Определитель матрицы равен сумме произведений некоторой строки на соответствующие алгебраические дополнения.

Системы уравнений с матрицами

Система 1 совместная, если имеет хотя бы одно решение.

Система 1 определенная, если есть только 1 решение и неопределенная, если более 1 решения.

Ранг матрицы.

Ранг нулевой матрицы равен 0.

Ранг единичной матрицыnm равен n.

Ранг трипсидальной матрицы равен числу ненулевых строк.

При элементарных преобразованиях матрицы ранг её остается неизменным.

При добавлении к матрице строки или столбца ранг её может только увеличиться или остаться неизменным.

Лекция 5.

.

Замечание: 1) Нет решения

2) . n-число неизвестных

а) r=n – одно решение

б) r<n – бесконечное множество решений, зависящих от S=n-r параметров.

Векторная алгебра

Проекция вектора на ось:

Проекцией точки на прямую называется основание перпендикуляра, опущенного из этой точки на прямую. Проекция АВ на х это число |A’B’| взятое со знаком +, если угол острый и со знаком – если угол тупой.

,

.

Скалярное произведение векторов

.

Признак перпендикулярности .

Векторное произведение векторов

; ;

Объем пирамиды ;

Смешанное произведение векторов

Если - углы, которые составляет вектор а с координатными осями, то , откуда следует

Условие коллинеарности

ab=0 – перпендикулярность

- коллинеарность

abc=0 – компланарность

Аналитическая геометрия

Плоскость в пространстве

Нормаль и точка привязки однозначно определяют положение плоскости в пространстве.

-

каноническое уравнение (1)

Общее уравнение плоскости

, где ,

где А, В, С – координаты нормали, D – свободный член, x,y,z – текущий координаты.

Уравнение плоскости, проходящий через точку перпендикулярно вектору N=(A;B;C), имеет вид

Уравнение плоскости, проходящей через три заданные точки записывают в виде

Уравнение плоскости в отрезках

Нормальное уравнение плоскости , где p – расстояние от начала координат.

Нормирующий множитель

Расстояние от точки до плоскости

Угол между плоскостями

Условия параллельности и перпендикулярности ;

Уравнение пучка плоскостей:

Прямые линии в пространстве.

-уравнение прямой

- параметрическое уравнение прямой.

- каноническое уравнение прямой.

Уравнения прямой, проходящей через 2 заданные точки

Угол между 2 прямыми

Взаимное расположение 2 прямых.

1. (могут лежать и на одной прямой)

2. (могут скрещиваться)

3. . Если (3) , то скрещиваются.

Взаимное расположение прямой и плоскости

1.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы