Алгебраические группы матриц
Введение
Множество матриц -ой степени над будем рассматривать как аффинное пространство с имеющейся на ней полином
иальной топологией. Алгебраические группы матриц определяются как невырожденные части алгебраических множеств из , являющиеся группами относительно обычного матричного умножения. Простейший пример такой группы - общая линейная группа . В настоящем параграфе мы начнем систематическое изучение алгебраических матричных групп.
Все топологические понятия относятся к полиномиальной топологии; черта обозначает замыкание в , диез - замыкание в , бемоль - взятие невырожденной части, т. е. - совокупность всех невырожденных матриц из . Иногда, допуская вольность, мы употребляем для групп те же понятия, что и для подлежащих алгебраических множеств, - например, говорим об общих точках групп; это не должно вызывать недоразумений.
1. Алгебраические группы матриц
1.1 Примеры алгебраических групп матриц
Классические матричные группы - общая, специальная, симплектическая и ортогональная:
где
- единичная матрица и штрих обозначает транспонирование.
Диагональная группа , группы клеточно-диагональных матриц данного вида. Треугольная группа (для определенности --- с нижним нулевым углом), унитреугольная группа (треугольные матрицы с единичной диагональю), группы клеточно-треугольных матриц данного вида.
Централизатор произвольного множества из в алгебраической группе , нормализатор замкнутого множества из в .
Пересечение всех алгебраических групп, содержащих данное множество матриц из --- алгебраическая группа. Она обозначается и называется алгебраической группой, порожденной множеством .
Каждую алгебраическую линейную группу из можно изоморфно --- в смысле умножения и полиномиальной топологии --- отождествить с замкнутой подгруппой из в силу формулы
Такое отождествление позволяет при желании ограничиться рассмотрением только таких групп матриц, которые сами являются алгебраическими множествами (а не их невырожденными частями). Это дает другое оправдание тем вольностям в терминологии, которые упоминались в начале параграфа.
Множество всех матриц из , оставляющих инвариантной заданную невырожденную билинейную форму на .
Пусть --- алгебра над конечной размерности (безразлично, ассоциативная или нет), --- группа всех ее автоморфизмов. Фиксируя в какую-нибудь базу и сопоставляя автоморфизмам алгебры их матрицы в этой базе, мы получим на строение алгебраической группы. Действительно, пусть
т. е. --- структурные константы алгебры . Пусть далее
где . Тогда задается в матричных координатах очевидными полиномиальными уравнениями, вытекающими из соотношений
Указать в приведенных выше примерах определяющие уравнения, найти общую точку, если она есть.
В дальнейшем нам встретится еще много примеров и конструкций алгебраических матричных групп.
1.1.1 Если матричная группа содержит алгебраическую подгруппу конечного индекса, то сама алгебраическая.
Доказательство. Пусть - аннулятор группы в , - его корень в . Надо показать, что . Пусть, напротив, . Пусть - смежные классы по . Для каждого выберем многочлен
Другие рефераты на тему «Математика»:
- Неевклидова геометрия
- Линейные и квадратичные зависимости, функция х и связанные с ними уравнения и неравенства
- Вычисление случайных величин
- Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков
- Основные положения дискретной математики
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах