Алгебраические группы матриц
Действительно, произведение матриц соответствует произведению линейных отображений (теорема 2 и соотношение (8)), а произведение любых отображений ассоциативно. К тому же результату можно прийти вычислительным путем, используя непосредственно соотношение (7).
3.3 Квадратные матрицы
Пусть (или src="images/referats/3158/image317.png">) --- множество всех квадратных матриц () порядка с вещественными коэффициентами ,
Единичному преобразованию , переводящему каждый столбец в себя, соответствует, очевидно, единичная матрица
Можно записать , где
- символ Кронекера. Правило (7) умножения матриц, в котором следует заменить на , показывает, что справедливы соотношения
Матричные соотношения (10), полученные вычислительным путем, вытекают, конечно, из соотношений для произвольного отображения , если воспользоваться теоремой 1 и равенством (8) с .
Как мы знаем (см. (5)), матрицы из можно умножать на числа, понимая под , где , матрицу .
Но умножение на скаляр (число) сводится к умножению матриц:
- известная нам скалярная матрица.
В равенстве (11) отражен легко проверяемый факт перестановочности с любой матрицей . Весьма важным для приложений является следующее его обращение.
3.3.1 Теорема. Матрица из , перестановочная со всеми матрицами в , должна быть скалярной.
Доказательство. Введем матрицу , в которой на пересечении -й строки и -го столбца стоит 1, а все остальные элементы --- нулевые. Если --- матрица, о которой идет речь в теореме, то она перестановочна,
Перемножая матрицы в левой и правой частях этого равенства, мы получим матрицы
с единственным ненулевым -м столбцом и соответственно с единственной ненулевой -й строкой. Их сравнение немедленно приводит к соотношениям при и . Меняя и , получаем требуемое.
Отметим еще соотношения , которые непосредственно вытекают из определения умножения матриц на скаляры или, если угодно, из соотношений (11) и из ассоциативности умножения матриц.
Для данной матрицы можно попробовать найти такую матрицу , чтобы выполнялось условие
Если матрица существует, то условию (12) в терминах линейных преобразований отвечает условие
означающее, что --- преобразование, обратное к . существует тогда и только тогда, когда --- биективное преобразование. При этом определено однозначно. Так как , то биективность означает, в частности, что
Пусть теперь --- какое-то биективное линейное преобразование из в . Обратное к нему преобразование существует, но, вообще говоря, не ясно, является ли оно линейным. Чтобы убедиться в линейности , мы введем векторы-столбцы
и применим к обеим частям этих равенств преобразование . В силу его линейности получим
Так как , то
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах