Алгебраические группы матриц
откуда, в соответствии с импликацией (13), находим, что , --- нулевые векторы. Таким образом, выполнены свойства (i), (ii) из 3.1, определяющие линейные отображения. Имеем c="images/referats/3158/image357.png">, где --- некоторая матрица. Переписав условие () в виде (см. (8)) и снова воспользовавшись теоремой 1, мы придем к равенствам (12).
Итак, матрица, обратная к , существует в точности тогда, когда преобразование биективно. При этом преобразование линейно. Биективность равносильна условию, что любой вектор-столбец записывается единственным образом в виде (1)
где --- столбцы матрицы (сюръективность приводит к существованию , для которого , а инъективность дает единственность : если , то , откуда, согласно (12), ). Значит, совпадает с пространством столбцов матрицы , так что .
Если матрица, обратная к , существует, то, согласно вышесказанному, она единственна. Ее принято обозначать символом . В таком случае (см. ())
Квадратную матрицу , для которой существует обратная матрица , называют невырожденной (или неособенной). Невырожденным называют и соответствующее линейное преобразование . В противном случае матрицу и линейное преобразование называют вырожденными (или особенными).
Резюмируем полученные нами результаты.
3.3.2 Теорема. Квадратная матрица порядка является невырожденной тогда и только тогда, когда ее ранг равен . Преобразование , обратное к , линейно и задается равенством (14).
Следствие. Невырожденность влечет невырожденность и . Если --- невырожденные --- матрицы, то произведение также невырождено и .
Для доказательства достаточно сослаться на симметричность условия .
Нами получено довольно много правил действий с квадратными матрицами порядка . Имеются в виду, ассоциативность (следствие теоремы 2), (10) и теорема 4. Обратим еще внимание на так называемые законы дистрибутивности:
где , , --- произвольные матрицы из .
Действительно, полагая , мы получим для любых равенство (используется дистрибутивность в ):
левая часть которого дает элемент матрицы , а правая --- элементы и матриц и соответственно . Второй закон дистрибутивности (16) проверяется совершенно аналогично. Необходимость в нем обусловлена некоммутативностью умножения в . Законы дистрибутивности
для линейных отображений , , из в можно не доказывать, ссылаясь на соответствие между отображениями и матрицами, но можно, в свою очередь, выводить (16) из (), поскольку в случае отображений, рассуждение столь же просто.
Другие рефераты на тему «Математика»:
- Доказательство утверждения, частным случаем которого является великая теорема Ферма
- Сущность метода Монте-Карло и моделирование случайных величин
- Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы
- Методы статистического исследования
- Частотно-временной анализ сигналов
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах