Применение математики в статистике
Содержание
1. Виды и формы связей, различаемые в статистике. 3
2. Оценка достоверности коэффициента корреляции. 6
3. Доверительные интервалы для оценки. 16
Список литературы 24
1. Виды и формы связей, различаемые в статистике
Современная наука об обществе объясняет суть явлений через изучение взаимосвязей явлений. Объем продукции пред
приятия связан с численностью работников, стоимостью основных фондов и т.д.
Различают два типа взаимосвязей между различными явлениями и их признаками: функциональную или жестко детерминированную и статистическую или стохастически детерминированную.
Функциональная связь – это вид причинной зависимости, при которой определенному значению факторного признака соответствует одно или несколько точно заданных значений результативного признака. Например, при у = Öx – связь между у и х является строго функциональной, но значению х = 4 соответствует не одно, а два значения y1 = +2; y2= -2.
Стохастическая связь – это вид причинной зависимости, проявляющейся не в каждом отдельном случае, а в общем, в среднем, при большом числе наблюдений. Например, изучается зависимость роста детей от роста родителей. В семьях, где родители более высокого роста, дети в среднем ниже, чем родители. И, наоборот, в семьях, где родители ниже ростом, дети в среднем выше, чем родители. Еще один пример: потребление продуктов питания пенсионеров зависит от душевого дохода: чем выше доход, тем больше потребление. Однако такого рода зависимости проявляются лишь при большом числе наблюдений.
Корреляционная связь – это зависимость среднего значения результативного признака от изменения факторного признака; в то время как каждому отдельному значению факторного признака Х может соответствовать множество различных значений результативного (Y).
Задачами корреляционного анализа являются:
1) изучение степени тесноты связи 2 и более явлений;
2) отбор факторов, оказывающих наиболее существенное влияние на результативный признак;
3) выявление неизвестных причинных связей. Исследование корреляционных зависимостей включает ряд этапов:
1) предварительный анализ свойств совокупности;
2) установление факта наличия связи, определение ее направления и формы;
3) измерение степени тесноты связи между признаками;
4) построение регрессионной модели, т.е. нахождение аналитического выражения связи;
5) оценку адекватности модели, ее экономическую интерпретацию и практическое использование.
Корреляционная связь между признаками может возникать различными путями. Важнейший путь - причинная зависимость результативного признака (его вариации) от вариации факторного признака. Например, Х – балл оценки плодородия почв, Y – урожайность сельскохозяйственной культуры. Здесь ясно, какой признак выступает как независимая переменная (фактор), а какой как зависимая переменная (результат).
Очень важно понимать суть изучаемой связи, поскольку корреляционная связь может возникнуть между двумя следствиями общей причины. Здесь можно привести множество примеров. Так, классическим является пример, приведенный известным статистиком начала XX в. А.А. Чупровым. Если в качестве признака Х взять число пожарных команд в городе, а за признак Y – сумму убытков в городе от пожаров, то между признаками Х и Y в городах обнаружится значительная прямая корреляция. В среднем, чем больше пожарников в городе, тем больше убытков от пожаров. В чем же дело? Данную корреляцию нельзя интерпретировать как связь причины и следствия, оба признака – следствия общей причины – размера города. В крупных городах больше пожарных частей, но больше и пожаров, и убытков от них за год, чем в мелких.
Современный пример. Сразу после 17 августа 1998 г. резко возросли цена валюты и объем покупки валюты частными лицами. Здесь также нельзя рассматривать эти два явления как причину и следствие. Общая причина – обострение финансового кризиса, приведшее к росту курсовой стоимости валюты и стремлению населения сохранить свои накопления в твердой валюте. Такого рода корреляцию называют ложной корреляцией.
Корреляция возникает и в случае, когда каждый из признаков и причина, и следствие. Например, при сдельной оплате труда существует корреляция между производительностью труда и заработком. С одной стороны, чем выше производительность труда, тем выше заработок. С другой – высокий заработок сам по себе является стимулирующим фактором, заставляющим работника трудиться более интенсивно.
По направлению выделяют связь прямую и обратную, по аналитическому выражению – прямолинейную и нелинейную.
В начальной стадии анализа статистических данных не всегда требуются количественные оценки, достаточно лишь определить направление и характер связи, выявить форму воздействия одних факторов на другие. Для этих целей применяются методы приведения параллельных данных, аналитических группировок и графический.
Метод приведения параллельных данных основан на сопоставлении 2 или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Сравним изменения двух величин (табл. 1).
Таблица 1
Х |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
Y |
5 |
9 |
6 |
10 |
12 |
17 |
15 |
20 |
23 |
С увеличением Х возрастает иY, поэтому связь между ними можно описать уравнением прямой.
Метод аналитических группировок характеризует влияние качественного признака на относительные средние величины, на показатели вариации количественных признаков. В качестве группировочного признака выбирается факторный. В таблице размещают средние значения одного или нескольких результативных признаков. Изменения факторного признака при переходе от одной группы к другой вызывают соответствующие изменения результативного признака (табл.2).
Оборачиваемость в днях – факторный признак, обозначаемый обычно X, а прибыль – результативный – Y. Табл. 9.2 ясно демонстрирует присутствие связи между признаками, это – отрицательная связь. Судить о том, линейная она или нет, по этим данным сложно.
Таблица 2. Характеристика зависимости прибыли малых предприятий от оборачиваемости оборотных средств на 1998 г.
Продолжительность оборота средств, дн. (Х) |
Число малых предприятий |
Средняя прибыль, млн. руб. (Y) |
40–50 |
6 |
14,57 |
51–70 |
8 |
12,95 |
71–101 |
6 |
7,40 |
Итого |
20 |
11,77 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах